Uso da absorciometria de raios x de dupla energia (DXA) para predição da composição da carcaça de vacas de descarte
Arquivos
Data
2025-07-28
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Viçosa
Resumo
A avaliação da composição de carcaças de vacas de descarte é essencial para a indústria da carne, mas métodos tradicionais de dissecação são inviáveis em ambientes industriais devido à sua natureza invasiva, demorada e custosa. O objetivo deste estudo foi desenvolver equações para predizer a composição física (músculo, gordura, osso) de meias-carcaças de vacas Nelore de descarte utilizando absorciometria de raios X de dupla energia (DXA). Foram avaliadas 24 meias- carcaças, que, após 24 horas de resfriamento, foram pesadas, divididas em cinco seções padronizadas e escaneadas pelo DXA. Em seguida, cada seção foi dissecada em músculo, gordura subcutânea, gordura intramuscular e osso, com os dois tipos de gordura somados para representar a gordura total. As estimativas de tecido magro, gordura e conteúdo mineral ósseo (BMC) obtidas pelo DXA foram usadas como preditoras para desenvolver modelos de regressão linear simples, sendo a precisão avaliada por R², RMSEP e AICc, com validação cruzada leave- one-out. Os resultados mostraram que o DXA apresentou excelente capacidade de predição para gordura (R² = 0,96; RMSEP = 1,53 kg), boa performance para músculo (R² = 0,84; RMSEP = 4,31 kg) e moderada para osso (R² = 0,73; RMSEP = 1,46 kg). A análise por seção evidenciou que regiões específicas da carcaça apresentam maior representatividade para certos tecidos: S2 foi mais precisa para gordura, S4 e S5 para músculo, e S1 para osso. Além disso, os modelos baseados em estimativas de gordura total ou seções isoladas também previram com alta acurácia a gordura subcutânea. Conclui-se que o DXA é uma ferramenta robusta e confiável para avaliar a composição física de carcaças de vacas de descarte, sendo que a utilização de seções representativas permite otimizar protocolos de avaliação, com potencial aplicação em cenários industriais para estimativa rápida e precisa de rendimento de carne. Palavras-chave: análise de imagem; bovinos; composição física; modelos de predição·
The evaluation of the composition of cull cow carcasses is essential for the meat industry, but traditional dissection methods are unfeasible in industrial settings due to their invasive, time-consuming, and costly nature. The objective of this study was to develop equations to predict the physical composition (muscle, fat, bone) of half- carcasses of culled Nellore cows using dual-energy X-ray absorptiometry (DXA). Twenty-four half-carcasses were evaluated, which, after 24 hours of cooling, were weighed, divided into five standardized sections, and scanned by DXA. Each section was then dissected into muscle, subcutaneous fat, intramuscular fat, and bone, with the two types of fat added together to represent total fat. The estimates of lean tissue, fat, and bone mineral content (BMC) obtained by DXA were used as predictors to develop simple linear regression models, with accuracy assessed by R², RMSEP, and AICc, with leave-one-out cross-validation. The results showed that DXA had excellent predictive ability for fat (R² = 0.96; RMSEP = 1.53 kg), good performance for muscle (R² = 0.84; RMSEP = 4.31 kg), and moderate performance for bone (R² = 0.73; RMSEP = 1.46 kg). The section analysis showed that specific regions of the carcass are more representative of certain tissues: S2 was more accurate for fat, S4 and S5 for muscle, and S1 for bone. In addition, models based on estimates of total fat or isolated sections also predicted subcutaneous fat with high accuracy. It is concluded that DXA is a robust and reliable tool for assessing the physical composition of cull cow carcasses, and the use of representative sections allows for the optimization of assessment protocols, with potential application in industrial settings for quick and accurate estimation of meat yield. Keywords: cattle; image analysis; physical composition; prediction models.
The evaluation of the composition of cull cow carcasses is essential for the meat industry, but traditional dissection methods are unfeasible in industrial settings due to their invasive, time-consuming, and costly nature. The objective of this study was to develop equations to predict the physical composition (muscle, fat, bone) of half- carcasses of culled Nellore cows using dual-energy X-ray absorptiometry (DXA). Twenty-four half-carcasses were evaluated, which, after 24 hours of cooling, were weighed, divided into five standardized sections, and scanned by DXA. Each section was then dissected into muscle, subcutaneous fat, intramuscular fat, and bone, with the two types of fat added together to represent total fat. The estimates of lean tissue, fat, and bone mineral content (BMC) obtained by DXA were used as predictors to develop simple linear regression models, with accuracy assessed by R², RMSEP, and AICc, with leave-one-out cross-validation. The results showed that DXA had excellent predictive ability for fat (R² = 0.96; RMSEP = 1.53 kg), good performance for muscle (R² = 0.84; RMSEP = 4.31 kg), and moderate performance for bone (R² = 0.73; RMSEP = 1.46 kg). The section analysis showed that specific regions of the carcass are more representative of certain tissues: S2 was more accurate for fat, S4 and S5 for muscle, and S1 for bone. In addition, models based on estimates of total fat or isolated sections also predicted subcutaneous fat with high accuracy. It is concluded that DXA is a robust and reliable tool for assessing the physical composition of cull cow carcasses, and the use of representative sections allows for the optimization of assessment protocols, with potential application in industrial settings for quick and accurate estimation of meat yield. Keywords: cattle; image analysis; physical composition; prediction models.
Descrição
Palavras-chave
Vacas - Carcaças - Modelos matemáticos, Vacas - Carcaças - Registros de desempenho, Raios X, Análise de regressão
Citação
CARVALHO, Wenderson Moura de. Uso da absorciometria de raios x de dupla energia (DXA) para predição da composição da carcaça de vacas de descarte. 2025. 39 f. Dissertação (Mestrado em Medicina Veterinária) - Universidade Federal de Viçosa, Viçosa. 2025.
