Advancing molecular breeding from marker-assisted selection to genomic prediction in tomato
Arquivos
Data
0203-05-19
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Viçosa
Resumo
This dissertation demonstrates how quantitative trait loci (QTL) mapping, marker-assisted selection (MAS), and genomic selection (GS) can be used to facilitate breeding for important agronomic traits in tomatoes. The first objective was to investigate the effect of deficit irrigation on yield and fruit quality attributes of four tomato introgression lines (IL) and hopefully locate QTLs for improved performance. Our results revealed losses in yield and fruit weight, but gains in soluble solids content, fruit redness, fruit firmness, and lycopene content as plants were subjected to deficit irrigation. QTLs for improved performance were detected for yield on tomato chromosome (Chr) 3, and lycopene content on Chr 2, and 3 under optimum irrigation, and for fruit firmness on Chr 3, and lycopene content on Chr 2, 3, and 7 under deficit irrigation. The second objective was to study the genetics of fruit puffiness, a physiological disorder that affects fruit quality and factory yield of tomatoes, and provide a solution to plant breeders that face this problem in their breeding populations. An advanced recombinant inbred line (RIL) and three-derived processing tomato populations were used for mapping and validation purposes, respectively. A dominant QTL for increased fruit puffiness was mapped on Chr 1 explaining from 5 to 22.5% of the total phenotypic variation. Missing heritability issues suggest polygenic control of fruit puffiness in tomatoes. A GS model developed from the mapping set predicted fruit puffiness in the validation set with an accuracy of r = 0.52 (p = 2.36e -12 ). MAS using the markers solcap_snp_sl_20440 and solcap_snp_sl_18619 associated with the QTL on Chr 1 was as effective as GS. The third objective was to investigate genomic prediction accuracy of yield-related traits in tomato hybrids. First, we imputed a total of 22,681 tomato hybrids using SNP information for 303 tomato parents. Seven GS models using three-related populations and all their possible combinations were then developed. Fifty hybrids were actually created for further use in field validation trials. With correlation coefficients as high as 0.42 for yield and 0.58 for fruit weight, genomic prediction of tomato hybrids showed to be very accurate. Fruit weight predictions were better than yield predictions. Increase in training population size improved yield predictions ofhybrids. For fruit weight, better predictions were obtained from the model in which training lines were more genetically related to selected hybrids. Overall, these results suggest that GS may help breeders to choose which hybrids they should invest in. This dissertation provides useful information about QTL discovery and the role of MAS and GS tools in applied tomato breeding. Keywords: QTL mapping. Marker-assisted selection. Genomic selection. Molecular breeding. Processing tomato.
Esta tese busca demonstrar como mapeamento de locos para caracteres quantitativos (QTL), seleção assistida por marcadores (SAM) e seleção genômica (SG) podem ser empregados de modo a facilitar o melhoramento para caracteres de importância econômica no tomateiro. O primeiro objetivo foi avaliar o efeito do déficit de irrigação na produção e qualidade de fruto de quatro linhagens de introgressão de tomateiro (ILs) e, com sorte, localizar QTLs para melhor desempenho. Nossos resultados revelaram perdas de produção e peso de frutos, porém ganhos em sólidos solúveis totais, na coloração e no teor de licopeno quando as plantas foram cultivadas sob déficit de irrigação. QTLs para aumento de desempenho foram observados para produção no cromossomo (Cr) 3, e teor de licopeno nos Cr 2 e 3 sob regime ótimo de irrigação, e para firmeza dos frutos no Cr 3, e teor de licopeno nos Cr 2, 3 e 7 sob regime de déficit. O segundo objetivo foi estudar a base genética da formação de frutos ocos em tomate, uma desordem fisiológica que afeta a qualidade e o rendimento industrial, bem como fornecer uma solução aos melhoristas que enfrentam esse problema nas suas populações de melhoramento. Uma população avançada de linhagens de recombinação (RIL), e três populações subsequentes oriundas dessa RIL foram utilizadas para mapeamento e validação de QTLs, respectivamente. Um QTL dominante para aumento de frutos ocos foi mapeado no Cr 1 o qual explicou de 5 a 22.5% da variação fenotípica total. Alta herdabilidade escondida sugere controle poligênico dessa característica em tomate. O modelo de SG desenvolvido a partir da população de mapeamento predisse a porcentagem de frutos ocos na população de validação com uma precisão de r = 0.52 (p = 2.36e -12 ). SAM para os marcadores solcap_snp_sl_20440 e solcap_snp_sl_18619 associados com o QTL no Cr 1 foi tão eficiente quanto SG. O terceiro objetivo foi investigar a aplicabilidade da predição genômica para características de produção em híbridos de tomateiro. O primeiro passo foi imputar um total de 22.681 híbridos de tomate usando informações de marcadores SNP de 303 pais. Sete modelos de SG foram criados usando três populações aparentadas e todas a combinações possíveis entre elas. Cinquenta híbridos foram produzidos para uso nos ensaios de validação. Com coeficientes decorrelação de até 0,42 para produção e 0,58 para peso médio dos frutos, a predição genômica de híbridos de tomateiro mostrou-se bastante precisa. As previsões de peso médio dos frutos foram melhores do que as de produção. Aumentar o tamanho da população de treinamento melhorou a predição da produção. Para peso dos frutos, melhores predições foram obtidas para o modelo no qual as linhagens usadas no treinamento eram mais aparentadas dos híbridos selecionados. No geral, nossos resultados sugerem que modelos de SG podem ajudar melhoristas a escolher quais híbridos de tomate eles devem investir. Esta tese de doutorado fornece informação útil sobre descoberta de QTLs para caracteres de interesse e sobre o papel da SAM e da SG no melhoramento genético do tomateiro. Palavras-chave: Mapeamento de QTL. Seleção assistida por marcadores. Seleção genômica. Melhoramento molecular. Tomate indústria.
Esta tese busca demonstrar como mapeamento de locos para caracteres quantitativos (QTL), seleção assistida por marcadores (SAM) e seleção genômica (SG) podem ser empregados de modo a facilitar o melhoramento para caracteres de importância econômica no tomateiro. O primeiro objetivo foi avaliar o efeito do déficit de irrigação na produção e qualidade de fruto de quatro linhagens de introgressão de tomateiro (ILs) e, com sorte, localizar QTLs para melhor desempenho. Nossos resultados revelaram perdas de produção e peso de frutos, porém ganhos em sólidos solúveis totais, na coloração e no teor de licopeno quando as plantas foram cultivadas sob déficit de irrigação. QTLs para aumento de desempenho foram observados para produção no cromossomo (Cr) 3, e teor de licopeno nos Cr 2 e 3 sob regime ótimo de irrigação, e para firmeza dos frutos no Cr 3, e teor de licopeno nos Cr 2, 3 e 7 sob regime de déficit. O segundo objetivo foi estudar a base genética da formação de frutos ocos em tomate, uma desordem fisiológica que afeta a qualidade e o rendimento industrial, bem como fornecer uma solução aos melhoristas que enfrentam esse problema nas suas populações de melhoramento. Uma população avançada de linhagens de recombinação (RIL), e três populações subsequentes oriundas dessa RIL foram utilizadas para mapeamento e validação de QTLs, respectivamente. Um QTL dominante para aumento de frutos ocos foi mapeado no Cr 1 o qual explicou de 5 a 22.5% da variação fenotípica total. Alta herdabilidade escondida sugere controle poligênico dessa característica em tomate. O modelo de SG desenvolvido a partir da população de mapeamento predisse a porcentagem de frutos ocos na população de validação com uma precisão de r = 0.52 (p = 2.36e -12 ). SAM para os marcadores solcap_snp_sl_20440 e solcap_snp_sl_18619 associados com o QTL no Cr 1 foi tão eficiente quanto SG. O terceiro objetivo foi investigar a aplicabilidade da predição genômica para características de produção em híbridos de tomateiro. O primeiro passo foi imputar um total de 22.681 híbridos de tomate usando informações de marcadores SNP de 303 pais. Sete modelos de SG foram criados usando três populações aparentadas e todas a combinações possíveis entre elas. Cinquenta híbridos foram produzidos para uso nos ensaios de validação. Com coeficientes decorrelação de até 0,42 para produção e 0,58 para peso médio dos frutos, a predição genômica de híbridos de tomateiro mostrou-se bastante precisa. As previsões de peso médio dos frutos foram melhores do que as de produção. Aumentar o tamanho da população de treinamento melhorou a predição da produção. Para peso dos frutos, melhores predições foram obtidas para o modelo no qual as linhagens usadas no treinamento eram mais aparentadas dos híbridos selecionados. No geral, nossos resultados sugerem que modelos de SG podem ajudar melhoristas a escolher quais híbridos de tomate eles devem investir. Esta tese de doutorado fornece informação útil sobre descoberta de QTLs para caracteres de interesse e sobre o papel da SAM e da SG no melhoramento genético do tomateiro. Palavras-chave: Mapeamento de QTL. Seleção assistida por marcadores. Seleção genômica. Melhoramento molecular. Tomate indústria.
Descrição
Palavras-chave
Tomate - Melhoramento genético, Mapeamento cromossômico, Marcadores genéticos
Citação
DARIVA, Françoise Dalprá. 2023. 119 f. Advancing molecular breeding from marker-assisted selection to genomic prediction in tomato.Tese (Doutorado em Fitotecnia) - Universidade Federal de Viçosa, Viçosa. 2023.