Estudo da relação entre variáveis meteorológicas e incidência de dengue utilizando métodos estatísticos e redes neurais artificiais
Arquivos
Data
2009-06-30
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Viçosa
Resumo
Neste trabalho avaliou-se a relação entre a dengue, causada pelo mosquito Aedes aegypti, e algumas variáveis meteorológicas. Um bom entendimento das relações entre variáveis meteorológicas e a dengue é crucial para a análise/entendimento dos potenciais impactos que as mudanças climáticas podem causar sobre a evolução da dengue, assim como pode contribuir para a elaboração de políticas públicas de prevenção da doença, em áreas epidêmicas e potencialmente epidêmicas. As taxas de transmissão da dengue estão relacionadas com fatores ambientais, fatores populacionais, comportamento humano bem como estão associadas a inter-relações entre estes fatores. Inicialmente utilizou-se uma Rede Neural Artificial (RNA) para simular os casos de dengue em cinco municípios do estado de São Paulo, sendo (i) variáveis de entrada das três últimas semanas de dengue, por semana epidemiológica (Dengue, Dengue-1 e Dengue-2), no ano de 2007 e (ii) dados de temperatura (máxima, mínima e média) e precipitação para simular a dengue com a rede neural e, finalmente, (iii) todos os dados das situações (i) e (ii) anteriores. A rede utilizada para simular a dengue através dos casos da doença nas últimas três semanas mostrou-se bastante eficaz. Quando se utilizaram apenas os dados das variáveis meteorológicas, a rede não conseguiu simular a dengue nos municípios estudados, indicando que não foi possível simular a dengue apenas com dados climáticos. A simulação feita, utilizando todos os dados relacionados, apesar de resultados satisfatórios, demonstrou uma queda na qualidade da simulação, indicando que as variáveis meteorológicas diluem a capacidade de aprendizagem da rede. Para auxiliar no processo de análise, utilizou-se o software estatístico Table Curve para se encontrar as equações que regem as curvas da relação dengue – variáveis meteorológicas.
This work examines the relationship between dengue and some meteorological variables. A good understanding of the relationship between meteorological variables and dengue is crucial for the analysis/understanding of potential impacts that climate change can cause the development of dengue, as well as contributes to the development of public policies for prevention of disease in epidemic areas and potentially epidemic. The rate of transmission of dengue fever are related to environmental factors, population factors, human behavior and is associated with inter-relationships between these factors. Initially it was used an Artificial Neural Network (ANN) to simulate the cases of dengue in 5 municipalities of São Paulo state, and (i) input variables of the last three weeks of dengue, weekly epidemiological (Dengue, Dengue-1 and Dengue-2), (ii) data of temperature (maximum, minimum and average), and precipitation to simulate the neural network with dengue and (iii) all data of the situations (i) and (ii) above. The network used to simulate the dengue cases by disease in the last three weeks proved to be very effective. When using only the data of meteorological variables, the network failed to simulate the dengue in the cities studied, indicating that it is not possible to simulate the dengue only with weather data The simulation made using all data related, although satisfactory results, showed a fall the quality of the simulation, indicating that the meteorological variables dilute the learning capacity of the network. To aid in the analysis process, the statistical software Table Curve was used to find the equations that govern the curves of the relationship primness – meteorological variables.
This work examines the relationship between dengue and some meteorological variables. A good understanding of the relationship between meteorological variables and dengue is crucial for the analysis/understanding of potential impacts that climate change can cause the development of dengue, as well as contributes to the development of public policies for prevention of disease in epidemic areas and potentially epidemic. The rate of transmission of dengue fever are related to environmental factors, population factors, human behavior and is associated with inter-relationships between these factors. Initially it was used an Artificial Neural Network (ANN) to simulate the cases of dengue in 5 municipalities of São Paulo state, and (i) input variables of the last three weeks of dengue, weekly epidemiological (Dengue, Dengue-1 and Dengue-2), (ii) data of temperature (maximum, minimum and average), and precipitation to simulate the neural network with dengue and (iii) all data of the situations (i) and (ii) above. The network used to simulate the dengue cases by disease in the last three weeks proved to be very effective. When using only the data of meteorological variables, the network failed to simulate the dengue in the cities studied, indicating that it is not possible to simulate the dengue only with weather data The simulation made using all data related, although satisfactory results, showed a fall the quality of the simulation, indicating that the meteorological variables dilute the learning capacity of the network. To aid in the analysis process, the statistical software Table Curve was used to find the equations that govern the curves of the relationship primness – meteorological variables.
Descrição
Palavras-chave
Meteorologia, Dengue, Climatologia, Redes neurais, Meteorology, Dengue, Climatology, Neural networks
Citação
CAMPOS, Hudson Rosemberg Poceschi e. Study of the relationship between meteorological variables and incidence of dengue using statistical methods and artificial neural networks. 2009. 101 f. Dissertação (Mestrado em Agrometeorologia; Climatologia; Micrometeorologia) - Universidade Federal de Viçosa, Viçosa, 2009.