Equações de Navier-Stokes com viscosidade variável na forma não-estacionária

Imagem de Miniatura

Data

2013-07-16

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Viçosa

Resumo

O objetivo principal desde trabalho ́e estudar a equação de Navier-Stokes não-estacionária (1)-(3). Mostraremos a existência, para n ≤ 4, e unicidade, para n ≤ 3, quando ν = ν 0 + ν 1 ||u|| 2 , com ν 0 , ν 1 > 0 constantes positivas. Também provaremos a existência, para n ≤ 4, quando ν = M (a(u)), onde a(u) = ||u|| 2 e M ́e uma função contínua e diferenciável. Para tanto, utilizaremos o Método de Galerkin aclopado com argumentos de compacidade e ponto fixo.
The main objective of this work is to study the Navier-Stokes non-stationary (1) - (3). We will show the existence, for n ≤ 4 and uniqueness, for n ≤ 3 when ν = ν 0 + ν 1 ||u|| 2 with ν 0 , ν 1 > 0 are positive constants. Also prove the existence, for n ≤ 4 when ν = M (a(u)), where a(u) = ||u|| 2 and M is a continuous function and differentiable. To do so, we use the Galerkin method coupled with arguments for compactness and fixed point.

Descrição

Palavras-chave

Equações diferenciais parciais, Galerkin, Método de, Operadores monótonos, Navier-Stokes, Equações de

Citação

SILVA, Samara Leandro Matos da. Equações de Navier-Stokes com viscosidade variável na forma não-estacionária . 2013. 81 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2013.

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por