Solos e Nutrição de Plantas

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/175

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Imagem de Miniatura
    Item
    Drenagem ácida e mobilização de elementos traço em geomateriais de minério de vanádio e urânio
    (Universidade Federal de Viçosa, 2013-07-31) Santos Junior, Luiz dos; Abrahão, Walter Antônio Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6; Mello, Jaime Wilson Vargas de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2; http://lattes.cnpq.br/6648155665007232; Azevedo, Mônica de Abreu; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782410Z5; Mendonça, Bruno Araujo Furtado de; http://lattes.cnpq.br/8081324794152785
    O Brasil é um país cujas riquezas minerais contribuem de forma expressiva para a economia. No entanto, a mineração pode ocasionar sérios impactos negativos ao meio ambiente. Dentre os problemas decorrentes dessa atividade, a drenagem ácida de mina (DAM) apresenta grande destaque, pois durante o processo ocorre a redução do pH e aumento da solubilidade e mobilização de elementos traço. Nesse contexto, o objetivo do trabalho consistiu em avaliar o risco de geração de drenagem ácida e contaminação ambiental pela mobilização de elementos como Al, As, Co, Fe, Mn, Ni, S e V em materiais provenientes de uma mineração do estado da Bahia e Minas Gerais. Particularmente, este estudo buscou ajustar métodos de extração sucessiva para avaliar a cinética da DAM e a mobilização dos elementos estudados com economia de tempo em relação aos métodos dinâmicos. Para isso, foram coletadas amostras em uma mina de vanádio em Maracás, Bahia, e em uma mina de urânio em Caldas, Minas Gerais. Foram realizados, nas amostras coletadas, testes estáticos por meio do potencial de acidificação e neutralização, determinando o balanço acido-base e testes testes dinâmicos através de colunas de lixiviação e pilhas de lixiviação. As extrações sucessivas foram feitas utilizando como oxidante o H2O2. Além disso, realizou-se uma extração sequencial para identificar as fases associadas ao As de algumas amostras. As amostras de Maracás também foram submetidas aos testes de solubilização e lixiviação conforme determinação da ABNT pela norma NBR 10.004/04. Para as amostras de Maracás, o pH ao longo das lixiviações oscilou entre 7 e 8, somente uma amostra apresentou valores de pH próximos a 4,5. Isso indica que nessa amostra a geração da drenagem ácida foi pequena no período considerado, mesmo o BAB indicando potencial para a ocorrência de tal problema. Além disso, algumas amostras apresentaram, ao longo das lixiviações, altas concentrações de As, Co, Ni e V acima do limite estabelecido pelo CONAMA através das resoluções n° 430 (2011) e 357 (2005). Por meio dos resultados da extração sequencial e de outros trabalhos realizados, foi constatado que o As mobilizado em uma das amostras de Maracás é proveniente dos sulfoarsenetos de Co e Ni e também do As adsorvido nos óxidos de Fe presentes. As correspondências entre colunas de lixiviação e extrações sucessivas para a mobilização de As e S de uma das amostras de Maracás foram feitas a partir das equações de regressão ajustadas pelo modelo de Boltzmann. Para as amostras de Caldas, ao longo das lixiviações realizadas, os valores de pH apresentaram-se abaixo de 4,5, indicando a geração de acidez pela oxidação dos sulfetos, conforme sugerido pelo BAB positivo encontrado para as amostras. Além disso, houve mobilização de Fe e S durante as lixiviações, sugerindo a oxidação da pirita presente nas amostras liberando Fe, S e acidez na solução lixiviada. Após a realização das extrações sucessivas para uma das amostras percebeu-se que não houve correspondência entre as mobilizações dos elementos nas extrações sucessivas e nas pilhas de lixiviação.
  • Imagem de Miniatura
    Item
    Ecotoxicidade de arsênio em solos e sua relação com o valor de prevenção
    (Universidade Federal de Viçosa, 2012-09-26) Moraes, Mateus Lanna Borges de; Mello, Jaime Wilson Vargas de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2; Abrahão, Walter Antônio Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6; http://lattes.cnpq.br/7472209077416208; Fernandes, Raphael Bragança Alves; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728400J8; Assis, Igor Rodrigues de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778546P9; Ciminelli, Virgínia Sampaio Teixeira; http://lattes.cnpq.br/3590884268165249
    Embora o conceito de áreas contaminadas não seja novidade, no Brasil o gerenciamento de áreas contaminadas é relativamente recente. Entre as ferramentas utilizadas no gerenciamento de áreas contaminadas estão os valores orientadores, adotados para subsidiar decisões, não só visando a proteção da qualidade dos solos e das águas subterrâneas, como também o controle da poluição. Em Minas Gerais, segundo a Deliberação Normativa COPAM Nº 166, de 29/06/2011, em consonância com a Resolução do CONAMA N° 420 de 28/12/2009, os valores orientadores são concentrações de substâncias químicas que fornecem orientação sobre a qualidade e as alterações do solo e da água subterrânea . São considerados três valores, denominados: 1) Valor de Referência de Qualidade (VRQ) que é determinado a partir do background natural dos solos de uma região; 2) Valor de Prevenção (VP) que é a concentração de determinada substância no solo acima da qual podem ocorrer alterações prejudiciais à qualidade do solo e da água subterrânea e 3) Valor de Investigação (VI) que é a concentração de determinada substância no solo ou na água subterrânea acima da qual existem riscos potenciais, diretos ou indiretos, à saúde humana. Os VP vigentes foram obtidos por meio de revisão da literatura nacional, considerando-se que o VP seria igual a menor concentração que causa alguma fitotoxicidade, bem como as concentrações máximas permitidas para aplicação de lodo em solos agrícolas (CETESB, 2001). As fontes consultadas, no entanto, remetem a trabalho realizado no Japão ( Heavy Metals in soils of Japan de Kitagishi, 1981), para estabelecer o limite máximo permitido para As em solos de várzea como sendo 15 mg kg-1 (VP vigente para As). O risco ecotoxicológico calculado para organismos do solo não foi considerado, pois esta informação não estava disponível na literatura nacional. Visando a definição do risco ecotoxicológico do elemento Arsênio (As) para organismos do solo em MG foram testados, conforme as normas para ensaios de toxidez aguda para plantas superiores ISO 11.269-2:2005, seis solos divididos em dois grupos: 1) Baixo background de As: um LATOSSOLO VERMELHO distroférrico (LVdf); um LATOSSOLO AMARELO distrófico (LAd) e um CAMBISSOLO HÁPLICO Tb distrófico (CXbd), onde foram testados os efeitos de doses crescentes de As (0, 15, 150, 1500 e 3000 mg kg-1); 2) Elevado background de As: dois NEOSSOLO LITÓLICO distrófico, do município de Paracatu, MG, com teor de As maior que 2000 mg kg-1 (Formação Paracatu) (RLd -A e RLd -B); e um NEOSSOLO LITÓLICO distrófico proveniente de Santa Bárbara, MG (RLd -SB) (Formação Bandada de Ferro; BIF Supergrupo Rio das Velhas) (teor de As = 28 mg kg-1). No primeiro grupo também foi avaliado o efeito do tempo de incubação (24h e 6 semanas) de uma fonte solúvel de As sobre a toxidez para soja (Glicyne max) e sorgo (Sorghum bicolor), a capacidade máxima de adsorção de arsênio (CMA-As) determinada por meio de isotermas de Langmuir e a adsorção deste elemento no solo. A avaliação da adsorção foi realizada por meio de extração sequencial proposta por Wenzel, 2001. Também foi realizado um teste preliminar de toxidez de As para minhocas terrestres (Eisenia andrei). A dose de As que causou redução de 50% do crescimento (EC50) das plântulas de soja e sorgo mostrou-se dependente da capacidade máxima de adsorção de Arsênio (CMA-As), a qual é dependente do teor e do tipo de argila de cada solo. A EC50 variou de 120 a 2500 mg kg-1, sendo o solo LAd, com a menor CMA-As, incubado por 24 h, a condição mais restritiva e o solo LVdf, com a maior CMA-As, incubado por seis semanas, a condição menos restritiva. As formas mais lábeis, consideradas biodisponíveis, do As adicionado foram significativamente diminuídas com o passar do tempo. Em contrapartida, as formas menos lábeis aumentaram com o tempo de incubação. Os solos com elevado background apresentaram a maior parte do As apenas em formas menos lábeis e, como consequência não mostraram toxidez aguda às plantas de soja e sorgo cuja biomassa não diferiu significativamente do controle. Diante destes resultados, são discutidos valores de prevenção (VP) para As, segundo metodologia Holandesa de Avaliação de Risco Preliminar, condizentes com a realidade das condições ambientais do Estado de Minas Gerais. Os valores obtidos, variaram desde 20 mg kg-1, para a condição mais restritiva, até 258 mg kg-1, para o solo com maior capacidade de adsorção de As. Verificou-se, também, que este valor tende a ser ainda maior para o caso de contaminação natural ou geogênica, muito comum no Estado de Minas Gerais, em relação ao valor vigente na legislação estadual que é igual a 15 mg kg-1.
  • Imagem de Miniatura
    Item
    Mitigação da lixiviação de arsênio, ferro e enxofre e revegetação de substratos minerados em área de ocorrência de drenagem ácida
    (Universidade Federal de Viçosa, 2006-09-29) Assis, Igor Rodrigues de; Abrahão, Walter Antônio Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6; Ribeiro Júnior, Emerson Silva; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723716E1; Dias, Luiz Eduardo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788182U8; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778546P9; Fontes, Maurício Paulo Ferreira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443T4; Costa, Liovando Marciano da; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787252H9
    A exploração de minerais sulfetados apresenta grande risco ao ambiente quando estes são expostos à superfície. Nestas condições estes minerais são oxidados produzindo águas ácidas, que no caso da mineração, principal forma de exposição destes minerais, é conhecida como drenagem ácida de mina. Estas águas podem atingir o lençol freático e cursos d água, com teores elevados de metais pesados (Pb, Cd, Ni, etc) e metalóides (As, B, etc) solubilizados pelo processo e deletérios para toda a cadeia trófica. Este trabalho teve como objetivo avaliar diferentes práticas mitigadoras de drenagem ácida e de revegetação por meio de experimentos em laboratório e em condições de campo. Para o experimento em laboratório, foram montados lisímetros com diferentes combinações de camadas de cobertura, de selamento e de quebra de capilaridade. Esta última com tratamentos adicionais, como uso de oxalato de sódio (selamento) e indução de formação de barreira geoquímica (neoformação de jarosita e, ou, natrojarosita). As camadas foram compostas por diferentes materiais, todos dispostos acima de uma camada do substrato sulfetado pouco intemperizado (B2), formando doze tratamentos mais testemunha (apenas o substrato B2), num esquema fatorial incompleto e delineamento em blocos casualisados. Foram aplicadas quantidades de água desionizada de acordo com o dobro da precipitação média mensal do município de Paracatu/MG. Este experimento teve duração de 24 meses, sendo obtidas, portanto, 24 amostras de lixiviado por unidade experimental, nas quais foram dosados os teores de As, Fe, S, Na e K, leitura do pH e quantificação do volume total lixiviado a cada mês. Após término, os lisímetros foram desmontados, coletadas amostras do substrato B2 para verificação da neoformação de jarosita e, ou, natrojarosita e amostras da camada de cobertura para análises químicas no intuito de se avaliar o potencial para revegetação. Os melhores resultados, onde a lixiviação de As, Fe e S foram significativamente menores, foram obtidos nos tratamentos com a indução da barreira geoquímica, sendo constatada a presença de jarosita pelas técnicas de difração de raios-X e espectroscopia Mössbauer. Embora tenham se obtido menores lixiviações de As, Fe e S com alguns tratamentos, nenhum destes foram eficazes em inibir a geração de acidez, ficando os valores de pH próximo a 3,0. A camada de cobertura teve pouca influência na lixiviação destes elementos, sendo o uso de argila mais indicado para revegetação, por apresentar menores teores de As. O uso de argila como camada selante propiciou melhores resultados (menores lixiviações), possivelmente pela sua capacidade em adsorver arsênio. A presença da camada de quebra de capilaridade foi de fundamental importância, por possivelmente promover um gradiente de umidade, pela diferença de textura, diminuindo significativamente as quantidades lixiviadas de As, Fe e S, mas o uso de oxalato de sódio nesta camada não teve efeito significativo, não apresentando diferença no volume lixiviado para todos os tratamentos analisados. As maiores lixiviações de Na e K foram para os tratamentos que receberam estes elementos para indução da formação da barreira geoquímica, sendo maior a lixiviação de Na, o que parece ter favorecido a formação de jarosita em detrimento a natrojarosita. O experimento de campo foi montado em março de 2000 com o objetivo de avaliar o efeito do substrato B1 (minério com baixo teor de sulfetos) e da argila como camadas selantes e camadas de cobertura para o crescimento de plantas. Foram montados quatro tratamentos com diferentes materiais compondo as camadas selante e superficial, nos quais foram plantadas mudas de nove espécies arbóreas e arbustivas. As avaliações consistiram de medições do diâmetro de colo e da altura das plantas. Foi determinado, ainda, o teor de arsênio disponível na camada de 0 a 20 cm de cada tratamento. A utilização da argila em ambas as camadas propiciou os melhores resultados, favorecendo o maior crescimento e a maior sobrevivência das plantas. A ausência deste material, também em ambas as camadas, propiciou a morte de todas as plantas, além de maior teor de arsênio disponível. Entre as espécies, destaca-se a Acacia holosericea com maior produção de biomassa e boa percentagem de sobrevivência. As espécies Flemingia sp., Enterolobium timbauva e Acacia polyphylla apresentaram as menores produções de biomassa.
  • Imagem de Miniatura
    Item
    Potencial de espécies vegetais para fitorremediação de um solo contaminado por arsênio
    (Universidade Federal de Viçosa, 2006-09-04) Melo, Roseli Freire de; Oliveira, Juraci Alves de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782512D8; Mello, Jaime Wilson Vargas de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2; Dias, Luiz Eduardo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788182U8; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766132U1; Abrahão, Walter Antônio Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6; Ribeiro Júnior, Emerson Silva; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723716E1
    O arsênio (As) é encontrado na natureza associado aos minérios de prata, ouro, antimônio, cobalto e de níquel. Existem vários casos de intoxicação e morte de milhares de pessoas contaminadas por arsênio em diversos países do mundo. No Brasil existem ocorrências de áreas com elevadas concentrações deste metalóide no Quadrilátero Ferrífero de Minas Gerais, no delta do rio Amazonas e Santana no Amapá, entre outras. Tendo em vista o impacto que o arsênio pode causar no ambiente é de grande importância o desenvolvimento de técnicas para a descontaminação de áreas com elevadas concentrações deste metalóide. O presente estudo teve como finalidade avaliar o potencial de diferentes espécies de leguminosas herbáceas - crotálaria (Crotalaria spectabilis Roth.), feijão de porco (Canavalia ensiformis L.), mucuna preta (Stilozobium aterrinum Piper & Tracy), forrageiras herbáceas - estilosante (Stylosanthes humilis HBK), amendoim forrageiro (Arachis pintoi Krapov. & Gregory), azevém (Lolium multiflorum L.) aveia preta (Avena sativa L.), leguminosas arbustivas - feijão guandu (Cajanus cajan L.), sesbania (Sesbania virgata Cav.), leucena (Leucaena leucocephala L.) e espécies de eucaliptos - Eucaliptus grandis Hill, E. cloeziana (F. Muell), E. urophylla (S.T. Black), Corymbia citriodora (Hill & Johnson) (Eucalyptus citriodora Hook) para programas de fitorremediação de áreas contaminadas por arsênio. Os ensaios foram conduzidos em casa de vegetação em blocos casualizados com três repetições. Amostras de Latossolo Vermelho Amarelo foram incubadas por 15 dias com diferentes doses de As 0,0; 50; 100 e 200 mg dm-3 para as espécies herbáceas e arbustivas e de 0,0; 50; 100; 200 e 400 mg dm-3 para as espécies de eucaliptos, as quais resultaram em teores recuperados (Mehlich 3) de 0,0; 12,9; 26,8; 58,7 e 128,8 mg dm-3, respectivamente. Como fonte de As foi utilizado o arsenato de sódio (Na2HAsO4+7H2O). Após o período de incubação, realizou-se a semeadura das espécies herbáceas e arbustivas, sendo que para as espécies de eucaliptos realizou-se o transplantio de mudas com aproximadamente dois meses de idade, e após a germinação e transplantio, realizou-se as adubações com macro e micronutrientes. Aos 65 (herbáceas) e 90 (arbustivas e eucaliptos) dias após a semeadura e/ou transplantio as plantas foram avaliadas quanto à altura, diâmetro, matéria seca de raízes e parte aérea. As plantas foram separadas em folhas jovens, intermediárias e basais, caule, ramos, pecíolo e raízes, de acordo com as espécies. Determinaram-se os teores de arsênio nas diferentes partes das plantas, bem como, o conteúdo e índice de translocação de As para cada espécie. Por meio de análises de regressão foram estimados os teores críticos (TC) de As disponíveis no solo que proporcionaram redução de 50 % da matéria seca produzida em relação às plantas testemunhas. As espécies avaliadas mostraram comportamento diferenciado quanto à tolerância ao As. As plantas de mucuna preta, sesbania, leucena, azevém e E. grandis não manifestaram sintomas morfológicos visuais de toxicidade e apresentaram valores de TC no solo significativamente superiores aos observados para as demais espécies no período de tempo estudado. Os elevados conteúdos de arsênio nas raízes dessas espécies sugerem a atuação de mecanismo diferenciado de acumulação e translocação do metalóide aos tecidos da parte aérea. As espécies feijão guandu, feijão de porco, aveia forrageira e E. cloeziana apresentaram-se sensíveis exibindo lesões em suas folhas basais na maior dose de arsênio testada, mostrando potencial para serem utilizadas como plantas bioindicadores de efeitos em solos contaminados por arsênio. Por outro lado, as espécies mucuna preta, azevém, amendoim, estilosante e E. urophylla apresentam alta tolerância com potencial para fitoestabilização. Por último, as plantas de E. grandis, crotalária e Corymbia citriodora mostratam-se com potencial para serem utilizadas na fitoextração, no entanto, trabalhos mais conclusivos são necessários em condições de campo para verificar a potencialidade dessas espécies por maior período de exposição.
  • Imagem de Miniatura
    Item
    Effectiveness and stability of aluminium and iron oxides nanoparticles for arsenate adsorption
    (Universidade Federal de Viçosa, 2008-06-16) Silva, Juscimar da; Abrahão, Walter Antônio Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6; Ciminelli, Virgínia Sampaio Teixeira; http://lattes.cnpq.br/3590884268165249; Mello, Jaime Wilson Vargas de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2; http://lattes.cnpq.br/1823571141094864; Caldeira, Claudia Lima; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727341T5; Schaefer, Carlos Ernesto Gonçalves Reynaud; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723204Y8; Fontes, Maurício Paulo Ferreira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443T4; Gasparon, Massimo
    The geochemical fates of arsenic and iron are closely correlated that methods of arsenic removal from water are based on the high affinity of this metalloid with Fe (hydr)oxides nanominerals. Nevertheless, in anoxic environment dissimilatory iron reducing bacteria play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in aquatic environment. Aluminium nanominerals are ubiquitous and also have great affinity for arsenic. Additionally, under reducing conditions, Al is rather stable and its presence in the Fe (hydr)oxides framework enhance their stability, as well reported in the literature. Thus, by associating the higher binding affinity of Fe (hydr)oxides for arsenic and the higher stability of Al under anoxic conditions can be an advantageous alternative for removing arsenic from water. In this study, we investigated the influence of structural Al in the Raman vibrational stretching modes of goethite and arsenate phases formed on its surface and on other Al and Fe (hydr)oxides, as well as their potential in adsorbing arsenic. The stability of arsenic retained by aluminium and iron (hydr)oxides under anoxic conditions in the presence of S. putrefaciens cells, and phosphate or carbonate competing anions was also investigated. Poorly crystalline aluminium hydroxide [Al(OH)3], gibbsite (Gb), 2-line ferrihydrite (Fh), hematite (Hm), goethite (Gt), and three Al-substituted goethites (AlGt) containing 13, 20, and 23 cmol mol-1 of Al were synthesised and characterised chemically and physically. These adsorbents without and with arsenate were investigated by X-ray diffraction, diffuse reflectance, and Raman spectroscopy. Adsorption kinetics at two different solid:solution ratios, 2.0 and 5.0 g L-1, and adsorption isotherms were obtained after equilibrating the samples with arsenate solution under constant shaking. As(V) adsorption maxima was measured at different pH ranging from 3 to 9. The adsorbents were anaerobically incubated under N2 atmosphere and supernatants were periodically sampled to evaluate the contents of soluble As. Presence of structural Al increased the specific surface area and the As adsorption capacity of the Gt. The general effects of the structural Al were to reduce Gt crystallinity and displace spectral lines. Such structural disorder was clearly identified by Raman spectroscopy and X-Ray diffraction. Changes in vibrational frequencies and linewidths due to structural Al resulted in loss and overlap of many Gt active bands. These effects increased as the degree of substitution increased. Raman technique also confirmed the co-occurrence of magnetite in AlGt13 sample, as indicated by XRD. As-O vibrational bands were visualised on all Raman spectra, except for pure Gt probably due to its lowest content of adsorbed As(V). Positions of As-O vibrational band suggested that As(V) was strongly retained on the minerals as innersphere surface complexes. In spite of the fast equilibrium, the increase in solid concentration limited the efficiency and velocity of arsenic adsorption. The As(V) adsorption maxima decreased in the following order: Al(OH)3 > Fh > AlGt13 > AlGt20 > AlGt23 > Gb > Hm > Gt. Nevertheless, by calculating adsorption capacities in terms of surface area, Gb, Gt, and Hm showed higher As(V) loading capacity. This suggest that available reactive sites were not fully occupied by arsenate on the amorphous and Alsubstituted (hydr)oxides. No relationship was observed between medium particle size and maxima adsorption. This suggests re-aggregation of the particles during the particle size measurement, or imperfections on the surface of the particles increasing their net charge, resulting in high adsorption density. The behaviour of all samples was strongly dependent on pH, and the maximum adsorption was achieved in slightly acidic conditions. In general, Al hydroxides were more efficient than Fe (hydr)oxides to remove As(V) from water. The presence of structural Al enhanced considerably the efficiency of the goethites which showed to be promising as adsorbents to remove arsenic from contaminated water. We found that S. putrefaciens cells were able to bind on mineral surfaces and utilise both noncrystalline and crystalline iron (hydr)oxides as electron acceptor releasing arsenic into solution. Al-substituted goethites presented a decrease in the fraction of soluble iron and mobilised arsenic as structural Al increased. The expected relationship between specific surface area and reductive dissolution of Fe and As was also affected by the increment in structural Al. Phosphate and carbonate affected the kinetics of iron reduction due to precipitation of soluble iron as metastable mineral phases (e.g. vivianite and siderite). It seems that analogous mineral phases of phosphates served as a sink for As limiting its mobilisation. Phosphate competed strongly with arsenate and its efficiency seemed to be governed by the nature of the binding mechanism between As and adsorbent surface. Higher fraction of arsenic was desorbed by phosphate from gibbsite followed by AlGts. Conversely, only Gb showed significant amounts of arsenate displaced by carbonate. In spite of low crystallinity, Al(OH)3 was the most efficient in retaining arsenate on its surface followed by Fh and Hm.