How to break the uniqueness of W1,ploc(Ω)Wloc1,p(Ω) -solutions for very singular elliptic problems by non-local terms

Imagem de Miniatura

Data

2018-12

Título da Revista

ISSN da Revista

Título de Volume

Editor

Zeitschrift für angewandte Mathematik und Physik

Resumo

In this paper, we are going to show existence of branches of bifurcation of positive W1,ploc(Ω)Wloc1,p(Ω) -solutions for the very singular non-local λλ -problem −⎛⎝⎜∫Ωg(x,u)dx⎞⎠⎟rΔpu=λ(a(x)u−δ+b(x)uβ) in Ω,u>0 in Ω and u=0 on ∂Ω, −(∫Ωg(x,u)dx)rΔpu=λ(a(x)u−δ+b(x)uβ) in Ω,u>0 in Ω and u=0 on ∂Ω, where Ω⊂RNΩ⊂RN is a smooth bounded domain, δ>0δ>0 , 0<β<p−10<β<p−1 , a and b are nonnegative measurable functions and g is a positive continuous function. Our approach is based on sub- supersolutions techniques, fixed point theory, in the study of W1,ploc(Ω)Wloc1,p(Ω) -topology of a solution application and a new comparison principle for sub-supersolutions in W1,ploc(Ω)Wloc1,p(Ω) to a problem with p-Laplacian operator perturbed by a very singular term at zero and sublinear at infinity.

Descrição

Palavras-chave

Very singular term, Uniqueness, Non-local, Comparison principle

Citação

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por