Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits

Imagem de Miniatura

Data

2016-02-01

Título da Revista

ISSN da Revista

Título de Volume

Editor

Physica D: Nonlinear Phenomena

Resumo

In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and periodic orbits. The main tool is the pruning method, which is used for finding a hyperbolic map, obtained uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set under consideration. Then we will show applications related to transport phenomena and to the problem of determining the orbits structure coexisting with a finite number of periodic orbits arising from the bouncing ball model.

Descrição

Palavras-chave

Homoclinic orbits, Chaos, Pruning theory

Citação

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por