Effectiveness and stability of aluminium and iron oxides nanoparticles for arsenate adsorption

dc.contributor.advisor-co1Abrahão, Walter Antônio Pereira
dc.contributor.advisor-co1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798343H6por
dc.contributor.advisor-co2Ciminelli, Virgínia Sampaio Teixeira
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/3590884268165249por
dc.contributor.advisor1Mello, Jaime Wilson Vargas de
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2por
dc.contributor.authorSilva, Juscimar da
dc.contributor.authorLatteshttp://lattes.cnpq.br/1823571141094864por
dc.contributor.referee1Caldeira, Claudia Lima
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727341T5por
dc.contributor.referee2Schaefer, Carlos Ernesto Gonçalves Reynaud
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723204Y8por
dc.contributor.referee3Fontes, Maurício Paulo Ferreira
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443T4por
dc.contributor.referee4Gasparon, Massimo
dc.date.accessioned2015-03-26T12:52:36Z
dc.date.available2014-08-11
dc.date.available2015-03-26T12:52:36Z
dc.date.issued2008-06-16
dc.description.abstractThe geochemical fates of arsenic and iron are closely correlated that methods of arsenic removal from water are based on the high affinity of this metalloid with Fe (hydr)oxides nanominerals. Nevertheless, in anoxic environment dissimilatory iron reducing bacteria play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in aquatic environment. Aluminium nanominerals are ubiquitous and also have great affinity for arsenic. Additionally, under reducing conditions, Al is rather stable and its presence in the Fe (hydr)oxides framework enhance their stability, as well reported in the literature. Thus, by associating the higher binding affinity of Fe (hydr)oxides for arsenic and the higher stability of Al under anoxic conditions can be an advantageous alternative for removing arsenic from water. In this study, we investigated the influence of structural Al in the Raman vibrational stretching modes of goethite and arsenate phases formed on its surface and on other Al and Fe (hydr)oxides, as well as their potential in adsorbing arsenic. The stability of arsenic retained by aluminium and iron (hydr)oxides under anoxic conditions in the presence of S. putrefaciens cells, and phosphate or carbonate competing anions was also investigated. Poorly crystalline aluminium hydroxide [Al(OH)3], gibbsite (Gb), 2-line ferrihydrite (Fh), hematite (Hm), goethite (Gt), and three Al-substituted goethites (AlGt) containing 13, 20, and 23 cmol mol-1 of Al were synthesised and characterised chemically and physically. These adsorbents without and with arsenate were investigated by X-ray diffraction, diffuse reflectance, and Raman spectroscopy. Adsorption kinetics at two different solid:solution ratios, 2.0 and 5.0 g L-1, and adsorption isotherms were obtained after equilibrating the samples with arsenate solution under constant shaking. As(V) adsorption maxima was measured at different pH ranging from 3 to 9. The adsorbents were anaerobically incubated under N2 atmosphere and supernatants were periodically sampled to evaluate the contents of soluble As. Presence of structural Al increased the specific surface area and the As adsorption capacity of the Gt. The general effects of the structural Al were to reduce Gt crystallinity and displace spectral lines. Such structural disorder was clearly identified by Raman spectroscopy and X-Ray diffraction. Changes in vibrational frequencies and linewidths due to structural Al resulted in loss and overlap of many Gt active bands. These effects increased as the degree of substitution increased. Raman technique also confirmed the co-occurrence of magnetite in AlGt13 sample, as indicated by XRD. As-O vibrational bands were visualised on all Raman spectra, except for pure Gt probably due to its lowest content of adsorbed As(V). Positions of As-O vibrational band suggested that As(V) was strongly retained on the minerals as innersphere surface complexes. In spite of the fast equilibrium, the increase in solid concentration limited the efficiency and velocity of arsenic adsorption. The As(V) adsorption maxima decreased in the following order: Al(OH)3 > Fh > AlGt13 > AlGt20 > AlGt23 > Gb > Hm > Gt. Nevertheless, by calculating adsorption capacities in terms of surface area, Gb, Gt, and Hm showed higher As(V) loading capacity. This suggest that available reactive sites were not fully occupied by arsenate on the amorphous and Alsubstituted (hydr)oxides. No relationship was observed between medium particle size and maxima adsorption. This suggests re-aggregation of the particles during the particle size measurement, or imperfections on the surface of the particles increasing their net charge, resulting in high adsorption density. The behaviour of all samples was strongly dependent on pH, and the maximum adsorption was achieved in slightly acidic conditions. In general, Al hydroxides were more efficient than Fe (hydr)oxides to remove As(V) from water. The presence of structural Al enhanced considerably the efficiency of the goethites which showed to be promising as adsorbents to remove arsenic from contaminated water. We found that S. putrefaciens cells were able to bind on mineral surfaces and utilise both noncrystalline and crystalline iron (hydr)oxides as electron acceptor releasing arsenic into solution. Al-substituted goethites presented a decrease in the fraction of soluble iron and mobilised arsenic as structural Al increased. The expected relationship between specific surface area and reductive dissolution of Fe and As was also affected by the increment in structural Al. Phosphate and carbonate affected the kinetics of iron reduction due to precipitation of soluble iron as metastable mineral phases (e.g. vivianite and siderite). It seems that analogous mineral phases of phosphates served as a sink for As limiting its mobilisation. Phosphate competed strongly with arsenate and its efficiency seemed to be governed by the nature of the binding mechanism between As and adsorbent surface. Higher fraction of arsenic was desorbed by phosphate from gibbsite followed by AlGts. Conversely, only Gb showed significant amounts of arsenate displaced by carbonate. In spite of low crystallinity, Al(OH)3 was the most efficient in retaining arsenate on its surface followed by Fh and Hm.eng
dc.description.abstractA geoquímica do arsênio e do ferro estão intimamente correlacionadas, de modo que os métodos de remoção de As da água são baseados na alta afinidade deste metalóide por nanominerias de oxihidróxidos de ferro. No entanto, em ambientes anóxicos as bactérias redutoras de ferro desempenham papel crucial na catálise de transformações redox que, em última análise, controlam a mobilidade do As em ambientes aquáticos. Nanominerias de Al são comuns em solos e sedimentos e também apresentam grande afinidade por As. Além disso, sob condições redutoras, o Al é estável e sua presença na estrutura dos oxihidróxidos de Fe aumenta a establidade destes oxidos, conforme bem documentado na literatura. Desta maneira, a associação da alta afinidade dos oxihidróxidos de Fe por As com a estabilidade do Al sob condições anóxicas pode ser uma alternativa vantajosa para a remoção de As da água. Neste estudo, a espectroscopia Raman foi utilizada para investigar a influência do alumínio estrutural nos modos vibracionais de goethitas e das fases formadas entre arsenato e os diferentes oxihidróxidos de Al e Fe, bem como o potencial destes nanominerais para adsorção de As. A estabilidade do As retido por oxihidróxidos de Al e Fe sob condições anóxicas, na presença da bacteria Shevanella putrefaciens e anions competidores, fosfato ou carbonato, também foi investigada. Hidróxido de Al de baixa cristalinidade [Al(OH)3], gibisita (Gb), ferrihidrita 2 linhas (Fh), hematita (Hm), goethita (Gt) e três goethitas com substituição por alumínio (AlGt), contendo 13, 20 e 23 cml mol-1 de Al, foram sintetizados e caracterizados química e fisicamente. Estes adsorventes sem e com arsenato foram caracterizados por difração de raios-X, reflectâcia difusa e espectroscopia Raman. A cinética de adsorção em duas diferentes relações solido:solução, 2,0 e 5,0 g L-1, e as isotermas de adsorção foram obtidas após equilibrar as amostras com soluções de arsenato sob agitação constante. A adsorção máxima de As(V) foi medida em diferentes valores de pH, variando de 3 até 9. Os adsorventes foram incubados anaerobicamente, sob atmosfera de N2, e os sobrenadantes foram periodicamente amostrados para avaliar as concentrações de As solúvel. A presença de alumínio estrutural aumentou a área superficial específica e a capacidade de adsorção de As da goethita. Os efeitos gerais da presença do Al estrutural foram diminuir a cristalinidade e deslocar as linhas espectrais da goethita. Tal desordem estrutural foi claramente identificada por espectroscopia Raman e difração de raios-X. As alterações nas frequências vibracionais e largura de bandas devido ao Al estrutural resultou em perdas e sobreposição de muitas bandas ativas da goethita. Esses efeitos aumentaram com o grau de substituição. A técnica Raman também confirmou a ocorrência de magnetita na amostra de goethita com menor grau de substituição, conforme identificado por difração de raios-X. Bandas vibracionais da ligações As-O foram observadas em todos os espectros Raman, exceto para goethita não substituída, provavelmente devido ao seu menor carregamento de As. As posições das bandas vibracionais As-O sugerem que o As(V) foi fortemente retido na superfície dos minerais como complexos de esfera interna. A despeito do rápido equilíbrio, a aumento na concentração de sólido, limitou a eficiência e a velocidade da adsorção de As. A adsorção máxima de As(V) diminuiu na seguinte ordem: Al(OH)3 > Fh > AlGt13 > AlGt20 > AlGt23 > Gb > Hm > Gt. No entanto, calculando as capacidades de adsorção por área superficial, Gb, Gt e Hm mostraram valores mais altos. Isto sugere que os sítios reativos não foram completamente ocupados por arsenato em goethitas com substituição por Al e oxihidróxidos mal cristalisados. Não foi observada relação entre tamanho édio das partículas e adsorção máxima. Isto sugere reagregação das partículas durante a análise ou imperfeições na superfície das partículas com aumento de sua carga líquida, resultando em alta densidade de adsorção. O comportamento de todas as amostram foi fortemente depente do pH e a adsorção máxima foi obtida em condições levemente ácidas. De modo geral os hidróxidos de Al foram mais eficientes do que os de oxihidróxidos de Fe para remover As(V) da água. A presença de alumínio estrutural aumentou consideravelmente a eficiência das goehitas, as quais se mostraram promissoras como adsorventes para remoção de arsênio de águas contaminadas. Verificou-se que as células de S. putrefaciens foram capazes de se ligar nas superficies minerais e utilizar os oxihidróxidos de Fe, tanto cristalinos quanto mal cristalisados, como aceptores finais de elétrons, mobilizando arsenio em solução. Goethitas substituidas por Al apresentaram decrescimo na fração de ferro solúvel e As mobilizado com o aumento do Al estrutural. A relação entre área surperficial específica e dissolução redutiva de Fe e As também foi afetada pelo aumento do Al estrutural, conforme esperado. O fosfato e o carbonato afetaram a cinética de redução do Fe devido à precipitação do ferro em solução como fases minerais metaestáveis (por exemplo vivianita e siderita). Parece que fases minerais análogas de fosfatos serviram como sumidouro para o arsênio, limitando sua mobilização. Fosfato competiu fortemente com o arsenato e sua eficiência parece ter sido governada pela natureza da ligação entre o As e a surperfície adsorvente. Uma maior fração de As foi dessorvido por fosfato na gibbsita, seguida pelas goethitas substituidas por Al. Por outro lado, apenas a gibbsita mostrou quantidades significativas de arsenato deslocado por carbonato. Não obstante a baixa cristalinidade, o Al(OH)3 foi mais eficiente para reter arsenato na sua superfície seguido por ferrihidrita e hematita.pt-BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico
dc.formatapplication/pdfpor
dc.identifier.citationSILVA, Juscimar da. Eficiência e estabilidade de nanopartículas de óxidos de alumínio e de ferro para adsorver arsênio. 2008. 105 f. Tese (Doutorado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2008.por
dc.identifier.urihttp://locus.ufv.br/handle/123456789/1589
dc.languageengeng
dc.publisherUniversidade Federal de Viçosapor
dc.publisher.countryBRpor
dc.publisher.departmentFertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,por
dc.publisher.initialsUFVpor
dc.publisher.programDoutorado em Solos e Nutrição de Plantaspor
dc.rightsAcesso Abertopor
dc.subjectArseniceng
dc.subjectWater treatmenteng
dc.subjectStabilityeng
dc.subjectContaminationeng
dc.subjectArsêniopor
dc.subjectTratamento de águapor
dc.subjectEstabilidadepor
dc.subjectContaminaçãopor
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLOpor
dc.titleEffectiveness and stability of aluminium and iron oxides nanoparticles for arsenate adsorptioneng
dc.title.alternativeEficiência e estabilidade de nanopartículas de óxidos de alumínio e de ferro para adsorver arsêniopor
dc.typeTesepor

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
texto completo.pdf
Tamanho:
1.01 MB
Formato:
Adobe Portable Document Format