Bayesian model-based clustering of temporal gene expression using autoregressive panel data approach

dc.contributor.authorNascimento, Moysés
dc.contributor.authorSáfadi, Thelma
dc.contributor.authorSilva, Fabyano Fonseca e
dc.contributor.authorNascimento, Ana Carolina C.
dc.date.accessioned2017-11-17T18:45:24Z
dc.date.available2017-11-17T18:45:24Z
dc.date.issued2012-06-04
dc.description.abstractIn a microarray time series analysis, due to the large number of genes evaluated, the first step toward understanding the complex time network is the clustering of genes that share similar expression patterns over time. Up until now, the proposed methods do not point simultaneously to the temporal autocorrelation of the gene expression and the model-based clustering. We present a Bayesian method that considers jointly the fit of autoregressive panel data models and hierarchical gene clustering. The proposed methodology was able to cluster genes that share similar expression over time, which was determined jointly by the estimates of autoregression parameters, by the average level of expression) and by the quality of the fitted model. The R codes for implementation of the proposed clustering method and for simulation study, as well as the real and simulated datasets, are freely accessible on the Web http://www.det.ufv.br/∼moyses/links.php.en
dc.formatpdfpt-BR
dc.identifier.issn1460-2059
dc.identifier.urihttps://doi.org/10.1093/bioinformatics/bts322
dc.identifier.urihttp://www.locus.ufv.br/handle/123456789/13263
dc.language.isoengpt-BR
dc.publisherBioinformaticspt-BR
dc.relation.ispartofseriesVolume 28, Issue 15, Pages 2004–2007, August 2012pt-BR
dc.rightsOpen Accesspt-BR
dc.subjectBayesian model-basedpt-BR
dc.subjectClustering of temporalpt-BR
dc.subjectGene expressionpt-BR
dc.subjectAutoregressive panelpt-BR
dc.titleBayesian model-based clustering of temporal gene expression using autoregressive panel data approachen
dc.typeArtigopt-BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
bts322.pdf
Tamanho:
344.19 KB
Formato:
Adobe Portable Document Format
Descrição:
texto completo

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções