Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11800

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Imagem de Miniatura
    Item
    Aqueous two-phase systems of copolymer L64 + organic salt + water: Enthalpic L64–salt interaction and Othmer–Tobias, NRTL and UNIFAC thermodynamic modeling
    (Chemical Engineering Journal, 2011-06-15) Andrade, Vivianne Molica de; Rodrigues, Guilherme Dias; Carvalho, Raquel Moreira Maduro de; Silva, Luis Henrique Mendes da; Silva, Maria C. Hespanhol da
    Phase diagrams of two-phase systems (ATPS) composed by the triblock copolymer L64 + organic salt (sodium tartrate, sodium succinate, sodium citrate, or ammonium citrate) + water, at different temperatures (278, 288, and 298 K) are presented in this work. Contrary to behavior of ATPS formed by inorganic salts, the study of the temperature influence in the liquid–liquid equilibrium behavior of L64–organic salts ATPS showed an exothermic character for phase separation process. Microcalorimetric measurements showed that this phase separation energy is around −0.2 kJ mol−1 for all organic salts. The module of slope of tie line (STL) tends to increase with an increase in temperature. The cation nature effect showed that the salt Na3C6H5O7 was more effective in promoting phase separation than (NH4)3C6H5O7. The capacity of the different anions tested for inducing ATPS formation with L64 followed the order: C6H5O73− > C4H4O62− > C4H4O42−. Because the salt–L64 interaction energy to be very similar, the cation and anion effects on the phase separation could be attribute to a process driven by entropy. The interaction parameters of the NRTL and UNIFAC models were estimated through the experimental data of all ternary systems. The results of the NRTL (with 64 tie-lines) and UNIFAC (with 27 tie-lines) were considered excellent with global root mean square deviations, respectively, of the 1.04% and 0.87%. The consistencies of the all tie-line experimental compositions were improved by applying the Othmer–Tobias correlation.
  • Imagem de Miniatura
    Item
    Aqueous two-phase systems: a new approach for the determination of p-aminophenol
    (Journal of Hazardous Materials, 2011-08-15) Rodrigues, Guilherme Dias; Lemos, Leandro Rodrigues de; Patrício, Pamela da Rocha; Silva, Luis Henrique Mendes da; Silva, Maria do Carmo Hespanhol da
    A new method has been developed for the spectrophotometric determination of p-aminophenol (PAP) in water, paracetamol formulations and human urine samples with a recovery rate between 94.9 and 101%. This method exploits an aqueous two-phase system (ATPS) liquid–liquid extraction technique with the reaction of PAP, sodium nitroprusside and hydroxylamine hydrochloride in pH 12.0, which produces the [Fe2(CN)10]^10− anion complex that spontaneously concentrates in the top phase of the ATPS (). The ATPS does not require an organic solvent, which is a safer and cleaner liquid–liquid extraction technique for the determination of PAP. The linear range of detection was from 5.00 to 500 μg kg^−1 (R ≥ 0.9990; n = 8) with a coefficient of variation of 2.11% (n = 5). The method exhibited a detection limit of 2.40 μg kg^−1 and a quantification limit of 8.00 μg kg^−1. The ATPS method showed a recovery that ranged between 96.4 and 103% for the determination of PAP in natural water and wastewater samples, which was in excellent agreement with the results of the standard 4-aminoantipyrine method that was performed on the same samples.
  • Imagem de Miniatura
    Item
    Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium
    (Journal of Chromatography A, 2013-03-01) Rodrigues, Guilherme Dias; Lemos, Leandro Rodrigues de; Silva, Luis Henrique Mendes da; Silva, Maria C. Hespanhol da
    This work developed a new and efficient method of extracting and separating Co(II), Ni(II) and Cd(II) in aqueous two-phase systems (ATPS) composed of triblock copolymer (L64) + Na2C4H4O6 + water and L64 + Li2SO4 + water using the hydrophobic extractant 1-nitroso-2-naphtol, which complexes the metal ions and partitions in the triblock copolymer micelles in the ATPS top phase. Metal extraction from the salt-rich phase to the copolymer – rich phase is strongly affected by the fine-tuning of the following parameters: amount of added extractant, type of electrolyte, pH, and tie-line length. Excellent separation factors (Si,j) between the metals were obtained at pH = 3.00 (SCo,Cd = 1550 and SNi,Cd = 16,700) and pH = 1.00 (SCo,Ni = 826). In the interference study, Co(II) was selectivity extracted in the top phase in the presence of Ni(II) and Cd(II) in a concentration of up to 20 times the cobalt level in the system.
  • Imagem de Miniatura
    Item
    A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system
    (Talanta, 2009-09-04) Rodrigues, Guilherme Dias; Lemos, Leandro Rodrigues de; Silva, Luis Henrique Mendes da; Silva, Maria do Carmo Hespanhol da; Minim, Luis Antonio; Coimbra, Jane Sélia dos Reis
    A greener and more sensitive spectrophotometric procedure has been developed for the determination of phenol and o-cresol that exploits an aqueous two-phase system (ATPS) using a liquid–liquid extraction technique. An ATPS is formed mostly by water and does not require organic solvent. Other ATPS components used in this study were the polymer, polyethylene oxide, and some salts (i.e., Li2SO4, Na2SO4 or K2HPO4 + KOH). The method is based on the reaction between phenol, sodium nitroprusside (NPS) and hydroxylamine hydrochloride (HL) in an alkaline medium (pH 12.0), producing the complex anion [Fe2(CN)10]^10− that spontaneously concentrates in the top phase of the system. The linear range was 1.50–500 μg kg^−1 (R ≥ 0.9997; n = 8) with coefficients of variation equal to 0.38% for phenol and 0.30% for o-cresol (n = 5). The method yielded limits of detection (LODs) of 1.27 and 1.88 μg kg^−1 and limits of quantification (LOQs) of 4.22 and 6.28 μg kg^−1 for phenol and o-cresol, respectively. Recoveries between 95.7% and 107% were obtained for the determination of phenol in natural water and wastewater samples. In addition, excellent agreement was observed between this new ATPS method and the standard 4-aminoantipyrine (4-AAP) method.
  • Imagem de Miniatura
    Item
    Copper recovery from ore by liquid–liquid extraction using aqueous two-phase system
    (Journal of Hazardous Materials, 2012-08-14) Lemos, Leandro Rodrigues de; Santos, Igor José Boggione; Rodrigues, Guilherme Dias; Silva, Luis Henrique Mendes da; Silva, Maria C. Hespanhol da
    We investigated the extraction behavior of Cu(II) in the aqueous two-phase system (ATPS) formed by (L35 + MgSO4 + H2O) or (L35 + (NH4)2SO4 + H2O) in the presence of the extracting agent 1-(2-pyridylazo)-2-naphthol (PAN). At pH = 3 and a PAN concentration of 0.285 mmol kg−1, both ATPS lead to the effective separation of Cu(II) from other metallic ions (Zn(II), Co(II), Ni(II) and Fe(III)). High separation factors range between 1000 and 10,000 were obtained for the extraction of Cu(II) and concomitant metallic ions. This ATPS was used for the extraction of Cu(II) from a leached ore concentrate with a extraction percentage of 90.4 ± 1.1%; other metals were mainly located in the bottom phase.