Fitopatologia - Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11741

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Genetic structure of the population of Alternaria solani in Brazil
    (Journal of Phytopathology, 2011-04) Lourenço Jr, Valdir; Rodrigues, Tatiana T. M. S.; Campos, Antonio M. D.; Bragança, Carlos A. D.; Scheuermann, Klaus K.; Reis, Ailton; Brommonschenkel, Sérgio H.; Maffia, Luiz A.; Mizubuti, Eduardo S. G.
    Understanding the genetic structure of the population of Alternaria solani (AS) is an important component of epidemiological studies of early blight, a severe disease that affects potato (Po) and tomato (To) worldwide. Up to 150 isolates obtained from both hosts were analysed with RAPD and AFLP markers to estimate the amount and distribution of genetic variability of AS in Brazil. Using RAPD, gene diversity (h=0.20) and scaled indices of diversity of Shannon (H′=0.66) and Stoddart and Taylor’s (G=0.31) for the Po population were higher than those of the To (h=0.07, H′=0.34, G=0.17). For AFLP, the statistics for the Po (h=0.17, H′=0.86, G=0.49) and To (h= 0.17, H′=0.85, G=0.36) populations were similar. For each RAPD and AFLP locus, the allele frequency for the overall population ranged from 0.006 to 0.988, and 0.007 to 0.993, respectively. Genetic differentiation was high (GST=0.41 and θ=0.59) and moderately high (GST=0.23 and θ=0.37) when estimated with RAPD and AFLP, respectively. Based on cluster analyses, there was strong evidence of association of pathogen haplotypes with host species. The null hypothesis of random association of alleles was rejected in the analysis of both RAPD (IA=13.1, P<0.001) and AFLP (IA=2.2, P<0.001) markers. The average number of migrants was estimated to be around one and two individuals per generation, using RAPD and AFLP, respectively. There was no correlation between genetic distance and geographical origin of AS haplotypes for RAPD (r=−0.07, P=0.84) and AFLP (r=−0.03, P=0.70). The AS population is clonal with high genetic variability, and there is genetic differentiation between the populations that affect To and Po.
  • Imagem de Miniatura
    Item
    Biological control of eucalyptus bacterial wilt with rhizobacteria
    (Biological Control, 2015-01) Santiago, Thais R.; Rossato, Mauricio; Romeiro, Reginaldo S.; Mizubuti, Eduardo S. G.; Grabowski, Cristhian
    The antagonistic potential of 298 rhizobacteria obtained from the rhizosphere and rhizoplane of tomato and eucalyptus plants was assessed for the control of bacterial wilt of eucalyptus caused by Ralstonia solanacearum. Several tests were performed using tomato plants as a screening system to select efficient rhizobacteria. Different methods for antagonist delivery and pathogen inoculation were evaluated: (1) seeds were microbiolized (soaked for 12 h in a suspension of the antagonist propagules) and germinated seedlings had their roots immersed in the pathogen inoculum suspension; (2) seedlings originated from microbiolized seeds were transplanted to soil infested with R. solanacearum and (3) roots of seedlings were immersed in a suspension of propagules of the antagonist and subsequently in a suspension of R. solanacearum. Nine isolates (UFV-11, 32, 40, 56, 62, 101, 170, 229, and 270) were selected as potential antagonists to R. solanacearum as they suppressed bacterial wilt in at least one of the methods assessed. The selected antagonists were evaluated against two isolates of R. solanacearum using in vitro and in vivo (inoculated eucalyptus) tests. Isolates UFV-56 (Bacillus thuringiensis), UFV-62 (Bacillus cereus) and a commercial formulation of several rhizobacteria (Rizolyptus®) suppressed bacterial wilt in eucalyptus protecting the plants during the early stages of development.
  • Imagem de Miniatura
    Item
    Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B
    (Virology Journal, 2014-04-05) Silva, Fábio N; Lima, Alison TM; Rocha, Carolina S; Castillo-Urquiza, Gloria P; Alves-Júnior, Miguel; Zerbini, F Murilo
    Begomoviruses are dicot-infecting, whitefly-transmitted viruses with a genome comprised of one or two molecules of circular, single-stranded DNA. In Brazil, tomato-infecting begomoviruses have emerged as serious pathogens since the introduction of a new biotype of the insect vector in the mid-1990’s. Tomato rugose mosaic virus (ToRMV) and Tomato severe rugose virus (ToSRV) are often found in tomato fields. The complete sequence of the DNA-B components of ToSRV and ToRMV show an identity of 98.2%. Additionally, the high nucleotide identity (96.2%) between their common regions indicates that these two viruses may share the same DNA-B. Tomato seedlings were biolistically inoculated with ToSRV (DNA-A and DNA-B) and ToRMV (DNA-A and DNA-B) infectious clones in every possible combination of single or mixed infection. Symptom expression was evaluated for up to 35 days post-inoculation (dpi). DNA was extracted at 28 dpi and the presence of each viral genomic component was examined by rolling circle amplification (RCA) followed by digestion, as well as by quantitative, real-time PCR. Sequence comparisons, recombination and phylogenetic analyzes were performed using EMBOSS needle, RDP program and maximum likelihood inference, respectively. Symptoms in tomato plants inoculated with the different combinations of ToRMV and ToSRV DNA-A and DNA-B components consisted of a typical mosaic in all combinations. Pseudorecombinants were formed in all possible combinations. When two DNA-A or two DNA-B components were inoculated simultaneously, the ToRMV components were detected preferentially in relation to the ToSRV components. The combination of minor changes in both the Rep protein and the CR may be involved in the preferential replication of ToRMV components. Recombination and phylogenetic analyzes support the exchange of genetic material between ToRMV and ToSRV. ToRMV and ToSRV form viable pseudorecombinants in their natural host (Solanum lycopersicum) and share the same DNA-B. ToRMV DNA components are preferentially replicated over ToSRV components. These results indicate that the emergence of ToRMV involved both recombination and pseudorecombination, further highlighting the importance of these mechanisms in the emergence and adaptation of begomoviruses.