Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11852

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 21
  • Imagem de Miniatura
    Item
    Nematicide activity of microfungi (Orbiliales, Orbiliaceae) after transit through gastrointenstinal tract of “Gallus gallus domesticus”
    (Revista Brasileira de Saúde e Produção Animal, 2017-01) Silva, Manoel Eduardo da; Silveira, Wendeo Ferreira da; Braga, Fábio Ribeiro; Araújo, Jackson Victor de
    Parasites are common in intensive or organics systems destined for chickens, which is more conducive to the emergence of gastrointestinal parasites, favored by direct contact with soil and other organisms. The growing demand for animal protein stimulates an expansion of production systems, increasing the stocking density. Outdoor poultry breeding systems (organic or not) that enable lower population density and higher animal welfare does not exclude these animals the presence of environmental pathogens. The control of gastrointestinal helminthosis in non-organic intensive and extensive systems is accomplished by administering anthelmintics with high cost and results unsatisfactory due to the misuse of drugs with consequent selection parasite strains resistant to chemical bases. This problem stimulate research into alternative control measures. Nematophagous fungi are used by its enzymatic action in controlled conditions and how environmental biocontrolers of larvae of gastrointestinal nematodes of livestock. This study evaluated the capacity of conidia/chlamydospores of nematophagous fungi as Duddingtonia flagrans (AC001 and CG722) and Monacrosporium thaumasium (NF34A) for cross the gastrointestinal tract of domestic chickens (Gallus gallus domesticus), and yours germination after traffic and predatory activity “in vitro” on larvae of Panagrellus spp. Fungi conidia/chlamydospores was identified in feces of chickens at times of 6, 12 and 24 hours after administration and spores viability was found after observing the germination, mycelial growth, followed by production of traps, capture and death of Panagrellus spp larvae in feces. Fungi Nematophagous are alternative control measures, efficient and innovative technology for the biological control of helminth parasites of chickens.
  • Imagem de Miniatura
    Item
    Fungi predatory activity on embryonated Toxocara canis eggs inoculated in domestic chickens (Gallus gallus domesticus) and destruction of second stage larvae
    (Parasitology Research, 2015-09) Araújo, Jackson Victor de; Fonseca, Leandro Abreu da; Hiura, Emy; Lopes, Aline del Carmen Garcia; Paz, Jeanne Saraiva da; Gava, Maylla Garschagen; Flecher, Mayra Cunha; Colares, Manuela; Soares, Filippe Elias de Freitas; Lacerda, Tracy; Braga, Fabio Ribeiro
    The objective of this study was to evaluate the infectivity of Toxocara canis eggs after interacting with isolated nematophagous fungi of the species Duddingtonia flagrans (AC001) and Pochonia chlamydosporia (VC4), and test the predatory activity of the isolated AC001 on T. canis second stage larvae after 7 days of interaction. In assay A, 5000 embryonated T. canis eggs previously in contact with the AC001 and VC4 isolated for 10 days were inoculated into domestic chickens (Gallus gallus domesticus), and then these animals were necropsied to collect material (digested liver, intestine, muscles and lungs) at 3-, 7-, 14-, and 21-day intervals after inoculation. In assay A, the results demonstrated that the prior interaction of the eggs with isolated AC001 and VC4 decreases the amount of larvae found in the collected organs. Difference (p < 0.01) was observed in the medium larvae counts recovered from liver, lung, intestine, and muscle of animals in the treated groups when compared to the animals in the control group. At the end of assay A, a percentage reduction of 87.1 % (AC001) and 84.5 % (VC4) respectively was recorded. In the result of assay B, the isolated AC001 showed differences (p < 0.01) compared to the control group, with a reduction of 53.4 % in the recovery of L2. Through these results, it is justified to mention that prior interaction of embryonated T. canis eggs with the tested fungal isolates were efficient in reducing the development and migration of this parasite, in addition to the first report of proven predatory activity on L2.
  • Imagem de Miniatura
    Item
    Reduction of bovine strongilides in naturally contaminated pastures in the southeast region of Brazil
    (Experimental Parasitology, 2018-11) Oliveira, Isabela de Castro; Vieira, Ítalo Stoupa; Carvalho, Lorendane Millena de; Campos, Artur Kanadani; Freitas, Samuel Galvão; Araujo, Juliana Milani de; Braga, Fábio Ribeiro; Araújo, Jackson Victor de
    Biological control through the use of nematophagous fungi is a sustainable alternative for combatting helminthes in domestic animals and allows a reduction in the use of anthelmintics. The objective of this research was to evaluate the efficacy of the Arthrobotrys cladodes var macroides fungus in a pelleted formulation, based on sodium alginate and administered twice a week orally, as an alternative for the biological control of nematodes in field-grown young cattle. The experiment was conducted in a farm located in the municipality of Viçosa, MG, where 12 cattle, seven to nine months old, were allocated in two groups (treated group and control group) and distributed in pickets of Brachiaria decumbens, naturally infested with nematode larvae. The animals in the treated group received 1g of sodium alginate matrix pellets for every 10 kg of animal live weight, containing the nematophagous fungus Arthrobotrys cladodes var macroides and administered twice a week in conjunction with commercial feed. In the control group, each animal received 1 g of pellets for every 10 kg of animal live weight, without fungal mycelium added to the feed. Samples of feces and pastures were collected fortnightly for 12 months. The results showed that the most prevalent nematode genera in the coprocultures were Haemonchus sp., Cooperia sp. and Oesophagostomum sp., reflecting the results found in forage. The pasture that contained the animals that received feed with the fungus presented a reduction of 59% and 52% of larvae recovered at distances of 20 cm and 40 cm from the fecal pats, respectively. The mean number of eggs per gram of feces each month and animal body weight did not differ (p > 0.05) between the treated and control groups. Stool and soil samples from both groups were colonized by A. cladodes fungus and other fungi. Administration of Arthrobotrys cladodes var macroides mycelium by means of a sodium alginate matrix twice weekly reduced larval infestation of the surrounding pasture, indicating that this fungus may be a promising biological control of infecting forms of nematodes present in the environment.
  • Imagem de Miniatura
    Item
    Using the fungus Arthrobotrys cladodes var. macroides as a sustainable strategy to reduce numbers of infective larvae of bovine gastrointestinal parasitic nematodes
    (Journal of Invertebrate Pathology, 2018-10) Oliveira, Isabela de Castro; Carvalho, Lorendane Millena de; Vieira, Ítalo Stoupa; Campos, Artur Kanadani; Freitas, Samuel Galvão; Araujo, Juliana Milani de; Braga, Fábio Ribeiro; Araújo, Jackson Victor de
    Research in the area of sanitation in ruminant production has focused on discovery of potential agents for biological control of helminths with nematophagous fungi and has provided evidence of success. The antagonistic potential of the fungus Arthrobotrys cladodes var. macroides on infective larvae of bovine gastrointestinal parasitic nematodes was evaluated by scanning electron microscopy. Additionally, an in vivo test of the resistance to digestive processes and viability of the fungus was carried out using a formulation based on sodium alginate administered orally in cattle. Production of conidia and chlamydospores was high. In in vitro tests, the number of infective nematode larvae was reduced 68.7% by the fungus in the treated group compared to the control group. The interaction between the fungus and the nematodes was confirmed by scanning electron microscopy. Plates containing fecal samples collected after oral administration of 100 g of pellets containing the A. cladodes fungus showed that the fungus survived passage through the gastrointestinal tract of ruminants, grew on agar, formed traps and preyed on L3 larvae of gastrointestinal parasites. The results of the present study provide a new opportunity for alternative, environmentally safe control of ruminant nematodes.
  • Imagem de Miniatura
    Item
    Destruction of Anoplocephala perfoliata eggs by the nematophagous fungus Pochonia chlamydosporia
    (Journal of Equine Veterinary Science, 2010-12) Silva, André R.; Araújo, Jackson V.; Braga, Fábio R.; Alves, Camila D. F.; Ribeiro Filho, José Dantas
    The in vitro effect of an isolate of the nematophagous fungus Pochonia chlamydosporia (VC1) on the eggs of Anoplocephala perfoliata was evaluated. The eggs were morphologically analyzed for their integrity using light microscopy (10× objectives), plated on 9.0-cm diameter petri dishes containing 2% WA culture medium with and without fungal isolate (control), grown for 10 days, and 10 replicates were prepared per group. In all, 1000 eggs of A perfoliata were plated on petri dishes containing 2% water agar culture medium with (VC1) and without the fungal isolate (control). After 3, 5, 7, and 10 days, approximately 100 eggs were removed from each plate and classified on the basis of the following parameters: without alteration; type 1, lytic effect without morphological damage to eggshell; type 2, lytic effect with morphological alteration of embryo and eggshell; and type 3, lytic effect with morphological alteration of embryo and eggshell, in addition to hyphal penetration and internal egg colonization and destruction. The P chlamydosporia fungus demonstrated ovicidal activity (P < .05) on the eggs of A perfoliata in the studied intervals presenting type 3 effects of 35%, 42.5%, 53.83%, and 71.17% for the intervals 3, 5, 7, and 10 days, respectively. P chlamydosporia is a potential biological control agent for the eggs of A perfoliata.
  • Imagem de Miniatura
    Item
    Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs
    (Tropical Animal Health and Production, 2010-11-19) Ferreira, Sebastião R.; Araújo, Jackson V.; Braga, Fabio R.; Araujo, Juliana M.; Carvalho, Rogério O.; Silva, André R.; Frassy, Luiza N.; Freitas, Leandro G.
    The ovicidal effect of the nematophagous fungus Pochonia chlamydosporia on eggs of Ascaris suum was tested under laboratory conditions. A. suum eggs were plated on 2% water–agar with seven fungal isolates (Isol. 5, Isol. 31, Isol. 1, VC1, Isol. 12, Isol. 22 and VC4) and control without fungus. After 5, 7, 10, 14, 15 and 21 days of incubation, approximately 100 eggs were removed from the plates and classified according to the following parameters: type 1, biochemical and physiological effect without morphological damage to the eggshell, type 2, lytic effect with morphological alteration of the eggshell and embryo and type 3, lytic effect with morphological alteration of eggshell and embryo showing hyphal penetration and internal egg colonization. The isolates effectively destroyed A. suum eggs and all types of effects were observed during the experiment. There was no variation in ovicidal capacity (type 3 effect) among the isolates (p > 0.05) throughout the experiment. After 21 days, isolate 5 showed the highest percentages of type 3 effect (58.33%). The results indicated that P. chlamydosporia (Isol. 5, Isol. 31, Isol. 1, VC1, Isol. 12, Isol. 22 and VC4) can destroy A. suum eggs and is, therefore, a potential biological control agent of nematodes.
  • Imagem de Miniatura
    Item
    Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus
    (Veterinary Research Communications, 2011-07-28) Ferreira, Sebastião Rodrigo; Araújo, Jackson Victor de; Braga, Fábio Ribeiro; Araujo, Juliana Milani; Frassy, Luiza Neme; Ferreira, Aloízio Soares
    Ascaris suum is a gastrointestinal nematode parasite of swines. The aim of this study was to observe Pochonia chlamydosporia fungus on biological control of A. suum eggs after fungus passage through swines gastrointestinal tract. Eighteen pigs, previously dewormed, were randomly divided into three groups: group 1, treated with the fungus isolate VC4; group 2, treated with the fungus isolate VC1 and group 3 did not receive fungus (control). In the treated groups, each animal received a 9 g single dose of mycelium mass containing P. chlamydosporia (VC1 or VC4). Thereafter, animal fecal samples were collected at the following intervals: 8, 12, 24, 36, 48, 72 and 96 h after treatment beginning and these were poured in Petri dishes containing 2% water-agar culture medium. Then, 1,000 A. suum eggs were poured into each dish and kept in an incubator at 26°C and in the dark for 30 days. After this period, approximately 100 eggs were removed from each Petri dish and morphologically analyzed under light microscopy following the ovicidal activity parameters. The higher percentage observed for isolated VC4 eggs destruction was 57.5% (36 h) after fungus administration and for isolate VC1 this percentage was 45.8% (24 h and 72 h) (p > 0.01). P. chlamydosporia remained viable after passing through the gastrointestinal tract of swines, maintaining its ability of destroying A. suum eggs.
  • Imagem de Miniatura
    Item
    In vitro ovicidal activity of the nematophagous fungi Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia on Trichuris vulpis eggs
    (Veterinary Parasitology, 2010-08-27) Silva, A.R.; Araújo, J.V.; Braga, F.R.; Alves, C.D.F.; Frassy, L.N.
    The in vitro effect of four isolates of the nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34a) and Pochonia chlamydosporia (VC1 and VC4) on the eggs of Trichuris vulpis was evaluated. One thousand eggs of T. vulpis were plated on Petri dishes with 2% water–agar with the fungal isolates grown and without fungus as control. After 7, 14 and 21 days 100 eggs were removed from each plate and classified according to the following parameters: type 1, lytic effect without morphological damage to eggshell; type 2, lytic effect with morphological alteration of embryo and eggshell; and type 3, lytic effect with morphological alteration of embryo and eggshell, besides hyphal penetration and internal egg colonization. P. chlamydosporia demonstrated ovicidal activity (p < 0.05) on the eggs of T. vulpis in the studied intervals presenting type 3 effect of 29.5% (VC1) and 36.5% (VC4), 59.5% (VC1) and 2.5% (VC4), 94.8% (VC1) and 2.95% (VC4) at 7, 14 and 21 days, respectively. The other fungi showed no type 3 effect. P. chlamydosporia should be a potential biological control agent of T. vulpis eggs.
  • Imagem de Miniatura
    Item
    Comparative analysis of destruction of the infective forms of Trichuris trichiura and Haemonchus contortus by nematophagous fungi Pochonia chlamydosporia; Duddingtonia flagrans and Monacrosporium thaumasium by scanning electron microscopy
    (Veterinary Microbiology, 2011-01-10) Silva, A.R.; Araujo, J.V.; Braga, F.R.; Benjamim, L.A.; Souza, D.L.; Carvalho, R.O.
    The present study aimed to demonstrate by scanning electron microscopy (SEM) the in vitro predatory activity of nematophagous fungi Pochonia chlamydosporia (VC1 and VC4 isolates) Duddingtonia flagrans (AC001 isolate) and Monacrosporium thaumasium (NF34a isolate) on eggs of Trichuris trichiura and infective larvae (L3) of Haemonchus contortus. The work was divided into two experimental tests (A and B). In tests A and B, the predatory activity of nematophagous fungi P. chlamydosporia, D. flagrans and M. thaumasium on eggs of T. trichiura and H. contortus L3 was observed. After 6 h, in test A, isolates P. chlamydosporia (VC1 and VC4) had a role in destroying eggs of T. trichiura. For fungi D. flagrans and M. thaumasium the ovicidal activity on T. trichiura eggs was not observed. Test B showed that D. flagrans (AC001) and M. thaumasium (NF34a) were capable of predating H. contortus L3, but no predation by the fungus P. chlamydosporia was seen. These fungi can offer potential for the biological control of nematodes.
  • Imagem de Miniatura
    Item
    Predatory activity of the nematophagous fungus Duddingtonia flagrans on horse cyathostomin infective larvae
    (Tropical Animal Health and Production, 2010-03-07) Braga, Fabio R.; Araújo, Jackson V.; Silva, André. R.; Carvalho, Rogério O.; Araujo, Juliana M.; Ferreira, Sebastião R.; Benjamin, Laércio A.
    This work was performed to determine the predatory capacity in vitro of the nematophagous fungus Duddingtonia flagrans (isolate AC001) on cyathostomin infective larvae of horse (L3). The experimental assay was carried out on plates with 2% water-agar (2% WA). In the treated group, each plate contained 1.000 L3 and 1.000 conidia of the fungus. The control group without fungus only contained 1.000 L3 in the plates. Ten random fields (4 mm diameter) were examined per plate of treated and control groups, every 24 h for seven days under an optical microscope (10× and 40× objective lens) for non-predated L3 counts. After 7 days, the non-predated L3 were recovered from the Petri dishes using the Baermann method. The interaction there was a significant reduction (p < 0.01) of 93.64% in the cyathostomin L3 recovered. The results showed that the D. flagrans is a potential candidate to the biological control of horse cyathostomin L3.