Agroquímica

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/199

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Adsorção e dessorção de arsênio(V) pelo compósito magnético hidrotalcita-ferro e seu emprego na remoção deste elemento de águas da região do Quadrilátero Ferrífero, Minas Gerais
    (Universidade Federal de Viçosa, 2010-02-12) Toledo, Thiago Vinícius; Neves, Antônio Augusto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788868U1; Reis, César; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785327P6; Bellato, Carlos Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727950A6; http://lattes.cnpq.br/5728475719662599; Teófilo, Reinaldo Francisco; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4762360H4; Silva, Gilmare Antônia da; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706079U9
    No presente trabalho a hidrotalcita teve as suas propriedades de adsorção e troca aniônica combinadas com as propriedades magnéticas do óxido de ferro para produzir um adsorvente magnético (HT-Fe). Este adsorvente teve o seu potencial de atuação avaliado na remoção de espécies de As(V) de soluções aquosas. As condições ótimas de adsorção foram determinadas e as concentrações de arsênio, para todos os casos, foram obtidas por Espectrometria de Absorção Atômica utilizando um gerador de hidretos (EAA-GH). Posteriormente, o compósito magnético HT-Fe foi submetido à calcinação com o objetivo de intensificar suas propriedades de adsorção e troca aniônica por meio do aumento da área superficial, da porosidade e também do efeito memória . Este adsorvente calcinado a 500 °C (HT-Fe 500) também teve o seu potencial de atuação avaliado na remoção de espécies de As(V) em águas. Tanto para o HT-Fe quanto para HT-Fe 500 o modelo cinético que melhor explica o processo de remoção do adsorvato, com R2 > 0,961 para o HT-Fe e R2 > 0,981 para o HT-Fe 500, foi o de pseudo segunda ordem, sugerindo que a quimissorção atua como etapa determinante no mecanismo de adsorção. A constante relacionada à velocidade de adsorção de pseudo segunda ordem mostrou-se dependente da concentração inicial do adsorvato e de comportamento inversamente proporcional, atingindo, no caso do HT-Fe, valor de 0,441 g mg-1 h-1 para 1,0 mg L-1 de As(V) e 3,09 x 10-3 g mg-1 h-1 quando a concentração inicial de As(V) era de 160,0 mg L-1; já para o HTFe 500 o valor obtido foi de 2,173 g mg-1 h-1 para 1,0 mg L-1 de As(V) e 0,0114 g mg-1 h-1 para a concentração inicial de As(V) igual a 160,0 mg L-1. No equilíbrio o modelo de isoterma que melhor explica o processo de adsorção, para ambos os adsorventes, é o proposto por Langmuir, indicando que o adsorvente possui um número definido de sítios ativos idênticos, onde cada um retém apenas uma molécula do adsorvato, que a energia de adsorção não depende da quantidade de material adsorvido e que as espécies adsorvidas não reagem com o meio e nem entre si, sendo a adsorção restrita a uma monocamada. Observou-se que a capacidade de adsorção máxima de As(V) estimada por este modelo para o HT-Fe 500 é 31,81 mg g-1. Esta capacidade é 3,12 vezes superior à apresentada pelo HT-Fe (10,19 mg g-1) para o mesmo valor de pH (7,0) e com uma dosagem em solução 2,5 vezes maior que a utilizada para o HT-Fe 500. Em valores de pH iguais a 4,0 e 9,0, o HT-Fe apresentou ainda capacidades máximas de adsorção iguais a 24,09 e 10,19 mg g-1, respectivamente. O adsorvente HT-Fe é facilmente recuperado por dessorção, sendo o melhor resultado obtido quando utilizado como dessorvente uma solução de NaOH 20% m/v, que dessorveu 81,7% da massa do adsorvato impregnada em 100,0 mg do compósito HT-Fe. Para o dessorvente NaOH 3% (m/v) + NaCl 5% (m/v) não houve nenhuma alteração da estrutura original do adsorvente e obteve-se 53,8% de dessorção da massa do adsorvato impregnada em 100,0 mg do mesmo. Para o HT-Fe 500 os melhores resultados obtidos na dessorção também foram para a solução de NaOH 20% (m/v) e para as soluções resultantes da combinação entre NaOH e NaCl, onde se constatou novamente que a massa dessorvida aumenta significativamente do primeiro para o segundo ciclo de dessorção. O potencial de atuação de ambos adsorventes, calcinado e não calcinado, também foi testado diante de amostras de águas naturais contaminadas por arsênio coletadas na região do Quadrilátero Ferrífero, MG. Os resultados das análises em água mostraram concentrações de As total variando entre 2,82 e 195,9 μg L-1, evidenciando que em algumas amostras as quantidades estão muito superiores ao limite máximo recomendado pelos órgãos brasileiros de monitoramento de águas destinadas ao consumo humano, que é de 10,0 μgL-1. Com isso, os níveis de remoção de As atingiram 92,75% com o compósito HTFe e 95,33 % com o HT-Fe 500 para a amostra real mais concentrada.
  • Imagem de Miniatura
    Item
    Remoção de Cr(VI) de soluções aquosas por adsorção em hidróxidos duplos lamelares e em quitosana quimicamente modificada e suas aplicações em efluentes de galvanoplastia
    (Universidade Federal de Viçosa, 2014-04-30) Toledo, Thiago Vinícius; Fontes, Maurício Paulo Ferreira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443T4; Reis, César; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785327P6; Bellato, Carlos Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727950A6; http://lattes.cnpq.br/5728475719662599; Silva, Júlio Cesar José da; http://lattes.cnpq.br/2275032719586397; Fernandes, Raphael Bragança Alves; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728400J8
    Neste trabalho, a hidrotalcita, um hidróxido duplo lamelar, teve suas propriedades de troca iônica combinadas com as propriedades magnéticas do óxido de ferro para produzir um adsorvente magnético, o HT-Fe 500. Este compósito magnético pode ser utilizado para a remoção de contaminantes aniônicos de águas e em seguida removido do meio por um simples processo magnético. A remoção de cromo(VI) de soluções aquosas foi avaliada através de experimentos de adsorção pelo método da batelada. A capacidade de adsorção, obtida a partir do modelo de Langmuir-Frendlich se mostrou dependente da temperatura e teve valores estimados em 25,93 e 48,31 mg g-1, respectivamente, para as temperaturas de 25 e 30 ° C. Resultados foram satisfatórios quando se empregou este adsorvente para a remoção de Cr(VI) de efluentes gerados em processos de galvanoplastia. A adsorção de Cr(VI) por hidróxidos duplos lamelares (HDLs) contendo os cátions metálicos Mg(II)/Al(III), Mg(II)/Fe(III), Co(II)/Al(III), Co(II)/Fe(III), Ni(II)/Al(III), Ni(II)/Fe(III), Zn(II)/Al(III) e Zn(II)/Fe(III) também foi investigada. Para todos estes HDLs variou-se o tipo de ânion interlamelar (CO32- e Cl-). Para os materiais contendo CO32- promoveu-se a calcinação, a fim de avaliar a variação na eficiência de adsorção pelo efeito da temperatura. Após estudo preliminar de adsorção de Cr(VI) pelos materiais sintetizados, o grupo dos HDLs contendo o cloreto como ânion interlamelar foi o que apresentou maior eficiência de adsorção. Assim, os HDLs Ni-Al-Cl, Mg-Al-Cl e Co-Al-Cl foram selecionados para os estudos posteriores. Para estes HDLs, o modelo cinético de pseudo-segunda ordem se ajustou aos dados experimentais da adsorção de Cr(VI) indicando quimiossorção. No equilíbrio, o modelo de Langmuir se ajustou aos dados experimentais de adsorção, comprovando que a adsorção ocorre em monocamada. As capacidades de adsorção previstas por este modelo (25 a 45 ° para os três HDLs ficaram entre 39,49 e 67,39 mg g-1. Os parâmetros C) termodinâmicos foram determinados e indicaram a natureza espontânea, exotérmica e química da adsorção. Ainda neste estudo, a adsorção de Cr(VI) por partículas magnéticas de quitosana modificadas com etilenodiamina e Fe3+ (MPCh-EDA-FeCL) foi também estudada pelos métodos da batelada e de coluna de leito fixo. De acordo com o modelo de Langmuir, a capacidade máxima de adsorção obtida ficou entre 78,43 e 59,07 mg g-1. Foram determinados os parâmetros termodinâmicos (-14,22 < ∆G° < -12,50 kJ mol-1, ∆H° = - 39,85 kJ mol-1 e ∆S° = - 0,086 kJ mol-1 K-1) que indicaram a natureza espontânea, exotérmica e química de adsorção. No estudo da coluna de leito fixo, a capacidade máxima de adsorção das colunas foi maior do que 52,27 mg g-1. Os resultados foram satisfatórios quando se empregou os adsorventes na remoção de Cr(VI) de efluente de processos de galvanoplastia.