Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    N-rich protein (NRP)-mediated cell death signaling: a new branch of the ER stress response with implications for plant biotechnology
    (Plant Signaling & Behavior, 2012-06-01) Reis, Pedro A.B.; Fontes, Elizabeth P.B.
    Upon disruption of ER homeostasis, plant cells activate at least two branches of the unfolded protein response (UPR) through IRE1-like and ATAF6-like transducers, resulting in the upregulation of ER-resident molecular chaperones and the activation of the ER-associated degradation protein system. Here, we discuss a new ER stress response pathway in plants that is associated with an osmotic stress response in transducing a cell death signal. Both ER and osmotic stress induce the expression of the novel transcription factor GmERD15, which binds and activates N-rich protein (NRP) promoters to induce NRP expression and cause the upregulation of GmNAC6, an effector of the cell death response. In contrast to this activation mechanism, the ER-resident molecular chaperone binding protein (BiP) attenuates the propagation of the cell death signal by modulating the expression and activity of components of the ER and osmotic stress-induced NRP-mediated cell death signaling. This interaction attenuates dehydration-induced cell death and promotes a better adaptation of BiP-overexpressing transgenic lines to drought.
  • Imagem de Miniatura
    Item
    N-rich protein (NRP)-mediated cell death signaling
    (Plant Signaling & Behavior, 2012-03-22) Reis, Pedro A.B.; Fontes, Elizabeth P.B.
    Upon disruption of ER homeostasis, plant cells activate at least two branches of the unfolded protein response (UPR) through IRE1-like and ATAF6-like transducers, resulting in the upregulation of ER-resident molecular chaperones and the activation of the ER-associated degradation protein system. Here, we discuss a new ER stress response pathway in plants that is associated with an osmotic stress response in transducing a cell death signal. Both ER and osmotic stress induce the expression of the novel transcription factor GmERD15, which binds and activates N-rich protein (NRP) promoters to induce NRP expression and cause the upregulation of GmNAC6, an effector of the cell death response. In contrast to this activation mechanism, the ER-resident molecular chaperone binding protein (BiP) attenuates the propagation of the cell death signal by modulating the expression and activity of components of the ER and osmotic stress-induced NRP-mediated cell death signaling. This interaction attenuates dehydration-induced cell death and promotes a better adaptation of BiP-overexpressing transgenic lines to drought.
  • Imagem de Miniatura
    Item
    The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-Rich protein-mediated signaling pathway
    (Plant Physiology, 2011-12) Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.
    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.
  • Imagem de Miniatura
    Item
    Early responsive to DEHYDRATION 15, a new transcription factor that integrates stress signaling pathways
    (Plant Signaling & Behavior, 2011-12-01) Alves, Murilo S.; Fontes, Elizabeth P.B.; Fietto, Luciano G.
    The Early Responsive to Dehydration (ERD) genes are defined as those genes that are rapidly activated during drought stress. The encoded proteins show a great structural and functional diversity, with a particular class of proteins acting as connectors of stress response pathways. Recent studies have shown that ERD15 proteins from different species of plants operate in cross-talk among different response pathways. In this mini-review, we show the recent progress on the functional role of this diverse family of proteins and demonstrate that a soybean ERD15 homolog can act as a connector in stress response pathways that trigger a programmed cell death signal.