Ciências Agrárias

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/2

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Herança e mapeamento genético da resistência à ferrugem (Puccinia psidii) em cruzamentos interespecíficos de Eucalyptus
    (Universidade Federal de Viçosa, 2008-02-21) Alves, Alexandre Alonso; Brommonschenkel, Sérgio Hermínio; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780948Y4; Grattapaglia, Dário; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781402Y1; Alfenas, Acelino Couto; http://lattes.cnpq.br/2514320654462590; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778972H7; Resende, Marcos Deon Vilela de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4709374E4; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6
    Visando estender os atuais estudos de herança, avaliou-se por meio de inoculações artificiais, a resistência de 10 progênies interespecíficas de Eucalyptus spp. desenvolvidas no Projeto Genolyptus. Os padrões de segregação obtidos para as dez progênies sugerem a ocorrência de epistasia recessiva dupla. Desse modo, a resistência à ferrugem deve depender de dois genes principais, um que codifica para uma proteína R, que reconhece proteínas Avr de Puccinia psidii de modo direto e o outro que codifique para um membro importante da cadeia de transdução de sinais como, por exemplo, uma proteína quinase que atua downstream do reconhecimento R-Avr. A falta da molécula sinalizadora bloquearia a ativação dos mecanismos de resistência do mesmo modo que a falta da proteína R resultaria em suscetibilidade. Alternativamente a resistência à ferrugem pode seguir o modelo guarda, onde uma proteína R, codificada por um dos genes, monitora uma proteína da planta tida como alvo de virulência pelo patógeno, codificada pelo segundo gene. A fim de se mapear o gene/QTL para resistência à ferrugem em um cruzamento interespecífico, 188 plantas obtidas do cruzamento [(E. dunnii x E. grandis 2) x (E. urophylla x E. globulus)] foram avaliadas quanto à resistência à ferrugem e genotipadas com um grupo de microssatélites que cobre todo o grupo de ligação 3. Apesar do padrão de segregação da resistência à ferrugem no cruzamento em questão corresponder àquele esperado para um caráter monogênico dominante, a resistência foi tratada como um caráter quantitativo e análises de QTL foram realizadas para estimar a posição e o efeito do loco envolvido na expressão da resistência. Para o mapeamento de QTLs em mapa integrado foi utilizada a estratégia de mapeamento por intervalo desenvolvida por Fulker & Cardon e para o mapeamento de QTLs nos mapas pseudo-testcross previamente construídos foi utilizada a estratégia de mapeamento por intervalo desenvolvida por Lander & Botstein. Como essas análises detectou-se um QTL para resistência à ferrugem no grupo de ligação 3. Esse QTL foi detectado com grande significância estatística pela metodologia de Fulker & Cardon entre os marcadores Embra286 e Embra122, e pela estratégia de Lander & Botstein entre os marcadores Embra350 e Embra239. A estimativa é que estes QTLs expliquem 71 e 42% da variação fenotípica, respectivamente, e sendo a herdabilidade da resistência à ferrugem neste cruzamento igual a 84%, esses QTLs devem explicar 84 e 50% da resistência à ferrugem nesse cruzamento, respectivamente. Uma vez que esses QTLs foram identificados na mesma região do grupo de ligação 3, eles devem corresponder a um mesmo loco. Para se obter o exato posicionamento do gene de resistência no mapa integrado previamente construído para a família (DxG2)x(UxGL) os dados de resistência à ferrugem foram analisados com um algoritmo implementado no software GQMOL. Com esta análise foi possível localizar o gene de resistência na região entre os marcadores Embra286 e Embra239 em uma janela genética de 14,6cM, confirmando ainda a hipótese que os dois genitores são heterozigotos para o gene de resistência. Os marcadores que flanqueiam esse gene/QTL podem ser utilizados em experimentos de introgressão com uma eficiência esperada de aproximadamente 99% na seleção de plantas resistentes, assumindo ausência de interferência de recombinação na região genômica alvo.
  • Imagem de Miniatura
    Item
    Linkage analysis and QTL mapping in simulated populations
    (Universidade Federal de Viçosa, 2010-10-25) Alves, Alexandre Alonso; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; Resende, Marcos Deon Vilela de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4709374E4; Alfenas, Acelino Couto; http://lattes.cnpq.br/2514320654462590; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778972H7; Bhering, Leonardo Lopes; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764363E6; Guimarães, Lúcio Mauro da Silva; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766939H1
    Como os recentes avanços na tecnologia têm levado ao desenvolvimento de novas tecnologias de genotipagem, no futuro, é mais provável que os mapas de ligação de alta densidade serão construídos a partir de marcadores dominantes e co-dominantes. Recentemente, uma abordagem estritamente genética foi proposta para a estimação da freqüência de recombinação (r) entre marcadores co-dominantes em famílias de irmãos completos. O conjunto completo de estimadores quase foi obtido, mas infelizmente, uma configuração envolvendo a estimativa da distância entre os marcadores dominantes, que segregam na proporção 3:1 e marcadores co-dominantes, não foi levada em consideração. Aqui novos nove estimadores são acrescentados ao conjunto previamente publicado, tornando possível cobrir todas as combinações de marcadores moleculares com dois a quatro alelos (sem epistasia) em uma família de irmãos completos. Isso inclui a segregação em um ou ambos os genitores, dominância e todas as configurações de fases de ligação. Como populações de retrocruzamentos (RC) são frequentemente utilizadas como populações de mapeamento, tanto em espécies autógamas, quanto em espécies alógamas foi conduzido um estudo de simulação para testar as implicações do tamanho da população, herdabilidade da característica, propriedades do QTL (r2, a e posição) e densidade de marcadores no poder de detecção e precisão do mapeamento de QTLs. Para tanto foram simuladas populações com diferentes tamanhos, com diferentes características (h2, número de QTLs e posição) e os dados analisados com dois métodos de mapeamento de QTLs comumente utilizados (mapeamento por intervalo simples (MIS) e mapeamento por intervalo composto (MIC)). Verificou-se que o tamanho da amostra tem uma grande implicação no poder de detecção e como conseqüência na estimação da magnitude da variação explicada pelo QTL e no efeito genético, em função de populações pequenas não permitirem o mapeamento de QTLs de pequeno efeito, principalmente quando esses estão envolvidos no controle genético de características de baixa herdabilidade. Também foi verificado que o posicionamento de QTLs baseados em MIC é mais acurado que MIS e que em média os QTLs mapeados estavam próximos as suas posições simuladas. Um resultado interessante é que o MIC tende a subestimar os valores de magnitude (r2) especialmente em populações grandes/ características de baixa herdabilidade e superestimá-la em populações pequenas, o que pode ser um reflexo do pequeno coeficiente de variação do erro utilizado, ou devido ao fato de quando os marcadores não se encontram na exata posição do QTL, esse parâmetro é de fato esperado ser subestimado. Destaca-se também, o fato que quando marcadores estão amplamente distribuídos ao longo do genoma (~10cM), e desse modo cobrindo a região do QTL, se um dos marcadores já estiver próximo ao QTL, um maior número de marcadores (~1cM) não melhora a precisão do mapeamento do QTL em populações suficientemente grandes. Baseado nesses resultados recomenda-se o uso de populações de tamanho adequado, ≥500, se a intenção é mapear QTLs em populações de RC, porque nessa situação, mesmo mapas de média densidade podem ser usados para mapear QTLs de grande ou pequeno efeito com grande confiabilidade. Finalmente, como os procedimentos de mapeamento de ligação e mapeamento de QTLs em famílias de irmãos completos (FIC) de espécies alógamas são bastante diversos, foi conduzido um estudo comparando o método de mapeamento por pseudo-testcross modificado (PST) (usando microsatélites), com o método de mapeamento baseado na FIC; em termos de ordenamento dos marcadores, distância entre os marcadores, comprimento total do mapa, variância das estimativas de distância e estresse. Investigou-se também o poder de detecção e a precisão de métodos de mapeamento de QTLs por intervalos baseados nos mapas PST ou no mapa para a FIC. Verificou-se que em geral as duas estratégias geram mapas altamente correlacionados com comprimentos dos grupos de ligação proporcionais. Verificou-se também que independentemente da abordagem de mapeamento de QTLs utilizadas, o poder de detecção é reduzido em populações pequenas, especialmente em situações onde a herdabilidade da característica ou magnitude do QTL é pequena. Também foi verificado que apesar dos dois métodos serem aparentemente equivalentes em termos de posicionamento do QTL para características de alta herdabilidade/ QTLs de grande efeito, o MIC baseado nos mapas pseudo-testcross prove dados mais acurados para características de baixa herdabilidade/QTLs de pequeno efeito. Como relação à magnitude dos QTLs, notou-se que ambos os métodos parecem ser equivalentes, sendo os valores superestimados para características de alta herdabilidade e subestimados para características de baixa herdabilidade, independentemente do tamanho amostral. Assim para espécies alógamas com médio nível de recursos genômicos, propõem-se que tanto a abordagem de PST quanto a abordagem baseada na FIC, e métodos de mapeamento de QTLs relacionados, possam ser utilizados para gerar mapas genéticos e mapear QTLs com alta confiabilidade. É importante ressaltar, entretanto, que outros estudos, usando diferentes cenários, i.e. diferentes coeficientes de variação do erro, diferentes números de QTLs, diferentes distribuições de marcadores, que coletivamente podem tornar a simulação um pouco mais realística, são necessários para verificar que os resultados deste trabalho se mantêm em todas as situações.