Bioquímica e Biologia Molecular

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11837

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 12
  • Imagem de Miniatura
    Item
    Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection
    (Microbes and Infection, 2008-07) Fietto, Juliana Lopes Rangel; Marques-da-Silva, Eduardo de Almeida; Oliveira, Jamile Camargos de; Figueiredo, Amanda Braga; Lima Júnior, Djalma de Souza; Carneiro, Cláudia Martins; Afonso, Luís Carlos Crocco
    Leishmaniasis is a parasitic disease with a variety of clinical forms, which are related to the Leishmania species involved. In the murine model, Leishmania amazonensis causes chronic non-healing lesions in Leishmania braziliensis- or Leishmania major-resistant mouse strains. In this study, we investigated the involvement of the pathway of extracellular nucleotide hydrolysis, with special focus on the role of extracellular adenosine, in the establishment of Leishmania infection. Our results show that the more virulent parasite—L. amazonensis—hydrolyzes higher amounts of ATP, ADP and AMP than the two other species, probably due to the higher expression of membrane NTPDase. Corroborating the idea that increased production of adenosine is important to lesion development and establishment of tissue parasitism, we observed that increased 5′-nucleotidase activity in L. braziliensis or addition of adenosine at the moment of infection with this parasite resulted in an increase in lesion size and parasitism as well as a delay in lesion healing. Furthermore, inhibition of adenosine receptor A2B led to decreased lesion size and parasitism. Thus, our results suggest that the conversion of ATP, a molecule with pro-inflammatory activity, into adenosine, which possesses immunomodulatory properties, may contribute to the establishment of infection by Leishmania.
  • Imagem de Miniatura
    Item
    Label-free assay based on immobilized capillary enzyme reactor of Leishmania infantum nucleoside triphosphate diphosphohydrolase (LicNTPDase-2-ICER-LC/UV)
    (Journal of Chromatography B, 2016-01-01) Vasconcellos, Raphael de Souza; Magalhães, Luana; Oliveira, Arthur Henrique Cavalcante de; Mariotini-Moura, Christiane; Firmino, Rafaela de Cássia; Fietto, Juliana Lopes Rangel; Cardoso, Carmen Lúcia
    Nucleoside triphosphate diphosphohydrolase (NTPDase) is an enzyme belonging to the apyrase family that participates in the hydrolysis of the nucleosides di- and triphosphate to the corresponding nucleoside monophosphate. This enzyme underlies the virulence of parasites such as Leishmania. Recently, an NTPDase from Leishmania infantum (LicNTPDase-2) was cloned and expressed and has been considered as a new drug target for the treatment of leishmaniasis. With the intent of developing label-free online screening methodologies, LicNTPDase-2 was covalently immobilized onto a fused silica capillary tube in the present study to create an immobilized capillary enzyme reactor (ICER) based on LicNTPDase-2 (LicNTPDase-2-ICER). To perform the activity assays, a multidimensional chromatographic method was developed employing the LicNTPDase-2-ICER in the first dimension, and an analytical Ascentis C8 column was used in the second dimension to provide analytical separation of the substrates and products. The validated LicNTPDase-2-ICER method provided the following kinetic parameters of the immobilized enzyme: KM of 2.2 and 1.8 mmol L^−1 for the ADP and ATP substrates, respectively. Suramin (1 mmol L^−1) was also shown to inhibit 32.9% of the enzymatic activity. The developed method is applicable to kinetic studies and enables the recognition of the ligands. Furthermore, a comparison of the values of LicNTPDase-2-ICER with those obtained with an LC method using free enzyme in solution showed that LicNTPDase-2-ICER-LC/UV was an accurate and reproducible method that enabled automated measurements for the rapid screening of ligands.
  • Imagem de Miniatura
    Item
    Trifluoromethyl arylamides with antileukemia effect and intracellular inhibitory activity over serine/arginine-rich protein kinases (SRPKs)
    (European Journal of Medicinal Chemistry, 2017-03-31) Siqueira, Raoni Pais; Barros, Marcus Vinícius de Andrade; Barbosa, Éverton de Almeida Alves; Onofre, Thiago Souza; Gonçalves, Victor Hugo Sousa; Pereira, Higor Sette; Silva Júnior, Abelardo; Oliveira, Leandro Licursi de; Almeida, Márcia Rogéria; Fietto, Juliana Lopes Rangel; Teixeira, Róbson Ricardo; Bressan, Gustavo Costa
    The serine/arginine-rich protein kinases (SRPKs) have frequently been found with altered activity in a number of cancers, suggesting they could serve as potential therapeutic targets in oncology. Here we describe the synthesis of a series of twenty-two trifluoromethyl arylamides based on the known SRPKs inhibitor N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) and the evaluation of their antileukemia effects. Some derivatives presented superior cytotoxic effects against myeloid and lymphoid leukemia cell lines compared to SRPIN340. In particular, compounds 24, 30, and 36 presented IC50 values ranging between 6.0 and 35.7 μM. In addition, these three compounds were able to trigger apoptosis and autophagy, and to exhibit synergistic effects with the chemotherapeutic agent vincristine. Furthermore, compound 30 was more efficient than SRPIN340 in impairing the intracellular phosphorylation status of SR proteins as well as the expression of MAP2K1, MAP2K2, VEGF, and RON oncogenic isoforms. Therefore, novel compounds with increased intracellular effects against SRPK activity were obtained, contributing to medicinal chemistry efforts towards the development of new anticancer agents.
  • Imagem de Miniatura
    Item
    E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation
    (Microbes and Infection, 2014-12-30) Souza Vasconcellos, Raphael de; Gomes, Rodrigo Saar; Carvalho, Luana Cristina Faria de; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco
    Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease.
  • Imagem de Miniatura
    Item
    The Genome of Anopheles darlingi, the main neotropical Malaria vector
    (Nucleic Acids Research, 2013-06-12) Maciel, Talles Eduardo Ferreira; Fietto, Juliana Lopes Rangel; Carvalho, Carlos Roberto de; Pereira, Maristela; Ribeiro, Carlos Alexandre Gomes; Neves, Rogério de Oliveira; Astolfi-Filho, Spartaco; Marinotti, Osvaldo; Cerqueira, Gustavo C.; Almeida, Luiz Gonzaga Paula de; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; Silva, Artur Luiz da Costa da; et al.
    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at
  • Imagem de Miniatura
    Item
    Potential antileukemia effect and structural analyses of SRPK inhibition by N-(2- (Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl) isonicotinamide (SRPIN340)
    (Plos One, 2014-04-08) Siqueira, Raoni Pais; Barbosa, Éverton de Almeida Alves; Polêto, Marcelo Depólo; Righetto, Germanna Lima; Seraphim, Thiago Vargas; Salgado, Rafael Locatelli; Ferreira, Joana Gasperazzo; Oliveira, Leandro Licursi de; Laranjeira, Angelo Brunelli Albertoni; Almeida, Márcia Rogéria; Fietto, Juliana Lopes Rangel; Kobarg, Jörg; Oliveira, Eduardo Basílio de; Teixeira, Robson Ricardo; Borges, Júlio César; Silva Júnior, Abelardo; Bressan, Gustavo Costa; et al.
    Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.
  • Imagem de Miniatura
    Item
    Retrospective study on Porcine circovirus-2 by nested pcr and real time pcr in archived tissues from 1978 in brazil
    (Brazilian Journal of Microbiology, 2011-03-14) Silva, Fernanda Miquelitto Figueira da; Silva Júnior, Abelardo; Peternelli, Ethel Fernandes de Oliveira; Viana, Vinícius Winter; Chiarelli Neto, Orlando; Fietto, Juliana Lopes Rangel; Vargas, Marlene Izabel; Nero, Luís Augusto; Almeida, Márcia Rogéria de
    Porcine circovirus-2 (PCV-2) infection is currently considered an important disease of swine. The pathogenic agent was first described in Brazil in 2000. This study detected the PCV-2 DNA in four Brazilian pig tissues collected between 1978 and 1979. This observation is the oldest description of this virus in Brazil.
  • Imagem de Miniatura
    Item
    Splicing regulators and their roles in cancer biology and therapy
    (BioMed Research International, 2015-04-01) Silva, Maria Roméria da; Moreira, Gabriela Alves; Silva, Ronni Anderson Gonçalves da; Barbosa, Éverton de Almeida Alves; Siqueira, Raoni Pais; Teixera, Róbson Ricardo; Almeida, Márcia Rogéria; Silva Júnior, Abelardo; Fietto, Juliana Lopes Rangel; Bressan, Gustavo Costa
    Alternative splicing allows cells to expand the encoding potential of their genomes. In this elegant mechanism, a single gene can yield protein isoforms with even antagonistic functions depending on the cellular physiological context. Alterations in splicing regulatory factors activity in cancer cells, however, can generate an abnormal protein expression pattern that promotes growth, survival, and other processes, which are relevant to tumor biology. In this review, we discuss dysregulated alternative splicing events and regulatory factors that impact pathways related to cancer. The SR proteins and their regulatory kinases SRPKs and CLKs have been frequently found altered in tumors and are examined in more detail. Finally, perspectives that support splicing machinery as target for the development of novel anticancer therapies are discussed.
  • Imagem de Miniatura
    Item
    Immobilization of NTPDase-1 from Trypanosoma cruzi and development of an online label-free assay
    (Journal of Analytical Methods in Chemistry, 2016-12-14) Calil, Felipe Antunes; Lima, Juliana Maria; Oliveira, Arthur Henrique Cavalcante de; Mariotini-Moura, Christiane; Fietto, Juliana Lopes Rangel; Cardoso, Carmen Lucia
    The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors). A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the TcNTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave K M of 0.317 ± 0.044 mmol·L−1, which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100 µmol·L−1, which is in accordance with the data for the enzyme in solution.
  • Imagem de Miniatura
    Item
    Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion
    (Acta Tropica, 2013-11-19) Mariotini-Moura, Christiane; Bastos, Matheus Silva e; Castro, Felipe Freitas de; Trindade, Mellina Lanna; Vasconcellos, Raphael de Souza; Neves-do-Valle, Myrian Augusta Araújo; Moreira, Bernardo Pereira; Santos, Ramon de Freitas; Oliveira, Claudia Miranda de; Cunha, Luana Celina Seraphim; Souto, Xênia Macedo; Bressan, Gustavo Costa; Silva-Júnior, Abelardo; Baqui, Munira Muhammad Abdel; Bahia, Maria Terezinha; Almeida, Márcia Rogéria de; Meyer-Fernandes, José Roberto; Fietto, Juliana Lopes Rangel
    Previous work has suggested that Trypanosoma cruzi diphosphohydrolase 1 (TcNTPDase-1) may be involved in the infection of mammalian cells and serve as a potential target for rational drug design. In this work, we produced recombinant TcNTPDase-1 and evaluated its nucleotidase activity, cellular localization and role in parasite adhesion to mammalian host cells. TcNTPDase-1 was able to utilize a broad range of triphosphate and diphosphate nucleosides. The enzyme's Km for ATP (0.096 mM) suggested a capability to influence the host's ATP-dependent purinergic signaling. The use of specific polyclonal antibodies allowed us to confirm the presence of TcNTPDase-1 at the surface of parasites by confocal and electron microscopy. In addition, electron microscopy revealed that TcNTPDase-1 was also found in the flagellum, flagellum insertion region, kinetoplast, nucleus and intracellular vesicles. The presence of this enzyme in the flagellum insertion region and vesicles suggests that it may have a role in nutrient acquisition, and the widespread distribution of TcNTPDase-1 within the parasite suggests that it may be involved in other biological process. Adhesion assays using anti-TcNTPDase-1 polyclonal antibodies as a blocker or purified recombinant TcNTPDase-1 as a competitor revealed that the enzyme has a role in parasite–host cell adhesion. These data open new frontiers to future studies on this specific parasite–host interaction and other unknown functions of TcNTPDase-1 related to its ubiquitous localization.