Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11797

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Effects of vascularization on cancer nanochemotherapy outcomes
    (Physica A: Statistical Mechanics and its Applications, 2016-08-01) Paiva, L. R.; Ferreira, S. C.; Martins, M. L.
    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.