Fitopatologia - Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11741

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Imagem de Miniatura
    Item
    Revisiting the classification of curtoviruses based on genome-wide pairwise identity
    (Archives of Virology, 2014-01-25) Zerbini, F. Murilo; Varsani, Arvind; Martin, Darren P.; Navas-Castillo, Jesús; Moriones, Enrique; Hernández-Zepeda, Cecilia; Idris, Ali; Brown, Judith K.
    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77 % genome-wide pairwise identity as a species demarcation threshold and 94 % genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77 % genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94 % identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV).
  • Imagem de Miniatura
    Item
    A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae)
    (Archives of Virology, 2013-01-23) Zerbini, F. Murilo; Muhire, Brejnev; Martin, Darren P.; Brown, Judith K.; Navas-Castillo, Jesús; Moriones, Enrique; Rivera-Bustamante, Rafael; Malathi, V. G.; Briddon, Rob W.; Varsani, Arvind
    Recent advances in the ease with which the genomes of small circular single-stranded DNA viruses can be amplified, cloned, and sequenced have greatly accelerated the rate at which full genome sequences of mastreviruses (family Geminiviridae, genus Mastrevirus) are being deposited in public sequence databases. Although guidelines currently exist for species-level classification of newly determined, complete mastrevirus genome sequences, these are difficult to apply to large sequence datasets and are permissive enough that, effectively, a high degree of leeway exists for the proposal of new species and strains. The lack of a standardised and rigorous method for testing whether a new genome sequence deserves such a classification is resulting in increasing numbers of questionable mastrevirus species proposals. Importantly, the recommended sequence alignment and pairwise identity calculation protocols of the current guidelines could easily be modified to make the classification of newly determined mastrevirus genome sequences significantly more objective. Here, we propose modified versions of these protocols that should substantially minimise the degree of classification inconsistency that is permissible under the current system. To facilitate the objective application of these guidelines for mastrevirus species demarcation, we additionally present a user-friendly computer program, SDT (species demarcation tool), for calculating and graphically displaying pairwise genome identity scores. We apply SDT to the 939 full genome sequences of mastreviruses that were publically available in May 2012, and based on the distribution of pairwise identity scores yielded by our protocol, we propose mastrevirus species and strain demarcation thresholds of >78 % and >94 % identity, respectively.
  • Imagem de Miniatura
    Item
    Revision of Begomovirus taxonomy based on pairwise sequence comparisons
    (Archives of Virology, 2015-04-18) Zerbini, F. Murilo; Brown, Judith K.; Navas-Castillo, Jesús; Moriones, Enrique; Ramos-Sobrinho, Roberto; Silva, José C. F.; Fiallo-Olivé, Elvira; Briddon, Rob W.; Hernández-Zepeda, Cecilia; Idris, Ali; Malathi, V. G.; Martin, Darren P.; Rivera-Bustamante, Rafael; Ueda, Shigenori; Varsani, Arvind
    Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
  • Imagem de Miniatura
    Item
    Capulavirus and Grablovirus: two new genera in the family Geminiviridae
    (Archives of Virology, 2017-02-17) Murilo Zerbini, F.; Varsani, Arvind; Roumagnac, Philippe; Fuchs, Marc; Navas-Castillo, Jesús; Moriones, Enrique; Idris, Ali; Briddon, Rob W.; Rivera-Bustamante, Rafael; Martin, Darren P.
    Geminiviruses are plant-infecting single-stranded DNA viruses that occur in most parts of the world. Currently, there are seven genera within the family Geminiviridae (Becurtovirus, Begomovirus, Curtovirus, Eragrovirus, Mastrevirus, Topocuvirus and Turncurtovirus). The rate of discovery of new geminiviruses has increased significantly over the last decade as a result of new molecular tools and approaches (rolling-circle amplification and deep sequencing) that allow for high-throughput workflows. Here, we report the establishment of two new genera: Capulavirus, with four new species (Alfalfa leaf curl virus, Euphorbia caput-medusae latent virus, French bean severe leaf curl virus and Plantago lanceolata latent virus), and Grablovirus, with one new species (Grapevine red blotch virus). The aphid species Aphis craccivora has been shown to be a vector for Alfalfa leaf curl virus, and the treehopper species Spissistilus festinus is the likely vector of Grapevine red blotch virus. In addition, two highly divergent groups of viruses found infecting citrus and mulberry plants have been assigned to the new species Citrus chlorotic dwarf associated virus and Mulberry mosaic dwarf associated virus, respectively. These species have been left unassigned to a genus by the ICTV because their particle morphology and insect vectors are unknown.
  • Imagem de Miniatura
    Item
    Complete nucleotide sequences of two new begomoviruses infecting the wild malvaceous plant Melochia sp. in Brazil
    (Archives of Virology, 2015-10-01) Fiallo-Olivé, Elvira; Zerbini, F. Murilo; Navas-Castillo, Jesús
    Wild malvaceous plants are hosts for a large number of begomoviruses (genus Begomovirus, family Geminiviridae) in both the Old World and the New World. Here, we report the complete genome sequences of two new begomoviruses from Melochia sp. plants from Brazil. The cloned bipartite genomes, composed of DNA-A and DNA-B, showed the typical organization of the New World begomoviruses but they were distantly related to the genomes of other begomoviruses. We propose the names Melochia mosaic virus and Melochia yellow mosaic virus for these begomoviruses.