Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11852

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 20
  • Imagem de Miniatura
    Item
    Nematicide activity of microfungi (Orbiliales, Orbiliaceae) after transit through gastrointenstinal tract of “Gallus gallus domesticus”
    (Revista Brasileira de Saúde e Produção Animal, 2017-01) Silva, Manoel Eduardo da; Silveira, Wendeo Ferreira da; Braga, Fábio Ribeiro; Araújo, Jackson Victor de
    Parasites are common in intensive or organics systems destined for chickens, which is more conducive to the emergence of gastrointestinal parasites, favored by direct contact with soil and other organisms. The growing demand for animal protein stimulates an expansion of production systems, increasing the stocking density. Outdoor poultry breeding systems (organic or not) that enable lower population density and higher animal welfare does not exclude these animals the presence of environmental pathogens. The control of gastrointestinal helminthosis in non-organic intensive and extensive systems is accomplished by administering anthelmintics with high cost and results unsatisfactory due to the misuse of drugs with consequent selection parasite strains resistant to chemical bases. This problem stimulate research into alternative control measures. Nematophagous fungi are used by its enzymatic action in controlled conditions and how environmental biocontrolers of larvae of gastrointestinal nematodes of livestock. This study evaluated the capacity of conidia/chlamydospores of nematophagous fungi as Duddingtonia flagrans (AC001 and CG722) and Monacrosporium thaumasium (NF34A) for cross the gastrointestinal tract of domestic chickens (Gallus gallus domesticus), and yours germination after traffic and predatory activity “in vitro” on larvae of Panagrellus spp. Fungi conidia/chlamydospores was identified in feces of chickens at times of 6, 12 and 24 hours after administration and spores viability was found after observing the germination, mycelial growth, followed by production of traps, capture and death of Panagrellus spp larvae in feces. Fungi Nematophagous are alternative control measures, efficient and innovative technology for the biological control of helminth parasites of chickens.
  • Imagem de Miniatura
    Item
    Using the fungus Arthrobotrys cladodes var. macroides as a sustainable strategy to reduce numbers of infective larvae of bovine gastrointestinal parasitic nematodes
    (Journal of Invertebrate Pathology, 2018-10) Oliveira, Isabela de Castro; Carvalho, Lorendane Millena de; Vieira, Ítalo Stoupa; Campos, Artur Kanadani; Freitas, Samuel Galvão; Araujo, Juliana Milani de; Braga, Fábio Ribeiro; Araújo, Jackson Victor de
    Research in the area of sanitation in ruminant production has focused on discovery of potential agents for biological control of helminths with nematophagous fungi and has provided evidence of success. The antagonistic potential of the fungus Arthrobotrys cladodes var. macroides on infective larvae of bovine gastrointestinal parasitic nematodes was evaluated by scanning electron microscopy. Additionally, an in vivo test of the resistance to digestive processes and viability of the fungus was carried out using a formulation based on sodium alginate administered orally in cattle. Production of conidia and chlamydospores was high. In in vitro tests, the number of infective nematode larvae was reduced 68.7% by the fungus in the treated group compared to the control group. The interaction between the fungus and the nematodes was confirmed by scanning electron microscopy. Plates containing fecal samples collected after oral administration of 100 g of pellets containing the A. cladodes fungus showed that the fungus survived passage through the gastrointestinal tract of ruminants, grew on agar, formed traps and preyed on L3 larvae of gastrointestinal parasites. The results of the present study provide a new opportunity for alternative, environmentally safe control of ruminant nematodes.
  • Imagem de Miniatura
    Item
    Biological control of goat gastrointestinal helminthiasis by Duddingtonia flagrans in a semi-arid region of the northeastern Brazil
    (Veterinary Parasitology, 2012-08-13) Braga, Fabio Ribeiro; Araújo, Jackson Victor de; Vilela, Vinícius Longo Ribeiro; Feitosa, Thais Ferreira; Souto, Diego Vagner de Oliveira; Santos, Herbis Eduardo da Silva; Silva, Gabriela Lucena Longo da; Athayde, Ana Célia Rodrigues
    The aim of this study was to test a pellet formulation in a sodium alginate matrix of Duddingtonia flagrans in the biological control of goat gastrointestinal helminths kept in a native pasture in a semi-arid region of Paraíba state, northeastern Brazil. An area of 2.4 ha was divided into three paddocks, where groups of seven goats ware formed. Each group received the following treatments during the months of March to August 2011: D. flagrans group, received 3 g of pellets containing D. flagrans (AC001) for each 10 kg/l. w., twice a week; Moxidectin 0.2% group, received 0.2 mg/kg of Moxidectin 0.2% orally, every 30 days; Control group, received 3 g of pellets without fungi per 10 kg/l. w., twice a week. Each month, a tracer goat was placed in each group for 30 days and then sacrificed and necropsied. The D. flagrans group showed a greater reduction in EPG, increased weight gain, higher rates of packed cell volume and lower parasitic load burden in the tracer goats compared to Moxidectin 0.2% and Control groups. D. flagrans was efficient in controlling goat gastrointestinal helminthiasis in a semi-arid region of northeastern Brazil.
  • Imagem de Miniatura
    Item
    Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs
    (Tropical Animal Health and Production, 2010-11-19) Ferreira, Sebastião R.; Araújo, Jackson V.; Braga, Fabio R.; Araujo, Juliana M.; Carvalho, Rogério O.; Silva, André R.; Frassy, Luiza N.; Freitas, Leandro G.
    The ovicidal effect of the nematophagous fungus Pochonia chlamydosporia on eggs of Ascaris suum was tested under laboratory conditions. A. suum eggs were plated on 2% water–agar with seven fungal isolates (Isol. 5, Isol. 31, Isol. 1, VC1, Isol. 12, Isol. 22 and VC4) and control without fungus. After 5, 7, 10, 14, 15 and 21 days of incubation, approximately 100 eggs were removed from the plates and classified according to the following parameters: type 1, biochemical and physiological effect without morphological damage to the eggshell, type 2, lytic effect with morphological alteration of the eggshell and embryo and type 3, lytic effect with morphological alteration of eggshell and embryo showing hyphal penetration and internal egg colonization. The isolates effectively destroyed A. suum eggs and all types of effects were observed during the experiment. There was no variation in ovicidal capacity (type 3 effect) among the isolates (p > 0.05) throughout the experiment. After 21 days, isolate 5 showed the highest percentages of type 3 effect (58.33%). The results indicated that P. chlamydosporia (Isol. 5, Isol. 31, Isol. 1, VC1, Isol. 12, Isol. 22 and VC4) can destroy A. suum eggs and is, therefore, a potential biological control agent of nematodes.
  • Imagem de Miniatura
    Item
    In vitro predatory activity of nematophagous fungi Duddingtonia flagrans on infective larvae of Oesophagostomum spp. after passing through gastrointestinal tract of pigs
    (Tropical Animal Health and Production, 2011-04-06) Ferreira, Sebastião Rodrigo; Araújo, Jackson Victor de; Braga, Fabio Ribeiro; Araujo, Juliana Milani; Fernandes, Fernanda Mara
    One isolate of predator fungi Duddingtonia flagrans (AC001) was assessed in vitro regarding the capacity of supporting the passage through pigs' gastrointestinal tract without loss of the ability of preying infective larvae Oesophagostomum spp. Fungal isolates survived the passage and were efficient in preying L3 since the first 8 h of collection (p < 0.01) in relation to the control group (without fungus). Compared with control, there was a significant decrease (p < 0.01) of 59.6% (8 h), 71.7% (12 h), 76.8% (24 h), 81.0% (36 h), 78.0% (48 h), 76.1% (72 h), and 82.7% (96 h) in means of infective larvae Oesophagostomum spp. recovered from treatments with isolate AC001. Linear regression coefficients of L3 of recovered Oesophagostomum spp. regarding the collections due to time were −0.621 for control, −1.40 for AC001, and −2.64 for NF34. Fungi D. flagrans (AC001) had demonstrated to be promising for use in the biological control of pig parasite Oesophagostomum spp.
  • Imagem de Miniatura
    Item
    Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus
    (Veterinary Research Communications, 2011-07-28) Ferreira, Sebastião Rodrigo; Araújo, Jackson Victor de; Braga, Fábio Ribeiro; Araujo, Juliana Milani; Frassy, Luiza Neme; Ferreira, Aloízio Soares
    Ascaris suum is a gastrointestinal nematode parasite of swines. The aim of this study was to observe Pochonia chlamydosporia fungus on biological control of A. suum eggs after fungus passage through swines gastrointestinal tract. Eighteen pigs, previously dewormed, were randomly divided into three groups: group 1, treated with the fungus isolate VC4; group 2, treated with the fungus isolate VC1 and group 3 did not receive fungus (control). In the treated groups, each animal received a 9 g single dose of mycelium mass containing P. chlamydosporia (VC1 or VC4). Thereafter, animal fecal samples were collected at the following intervals: 8, 12, 24, 36, 48, 72 and 96 h after treatment beginning and these were poured in Petri dishes containing 2% water-agar culture medium. Then, 1,000 A. suum eggs were poured into each dish and kept in an incubator at 26°C and in the dark for 30 days. After this period, approximately 100 eggs were removed from each Petri dish and morphologically analyzed under light microscopy following the ovicidal activity parameters. The higher percentage observed for isolated VC4 eggs destruction was 57.5% (36 h) after fungus administration and for isolate VC1 this percentage was 45.8% (24 h and 72 h) (p > 0.01). P. chlamydosporia remained viable after passing through the gastrointestinal tract of swines, maintaining its ability of destroying A. suum eggs.
  • Imagem de Miniatura
    Item
    In vitro ovicidal activity of the nematophagous fungi Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia on Trichuris vulpis eggs
    (Veterinary Parasitology, 2010-08-27) Silva, A.R.; Araújo, J.V.; Braga, F.R.; Alves, C.D.F.; Frassy, L.N.
    The in vitro effect of four isolates of the nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34a) and Pochonia chlamydosporia (VC1 and VC4) on the eggs of Trichuris vulpis was evaluated. One thousand eggs of T. vulpis were plated on Petri dishes with 2% water–agar with the fungal isolates grown and without fungus as control. After 7, 14 and 21 days 100 eggs were removed from each plate and classified according to the following parameters: type 1, lytic effect without morphological damage to eggshell; type 2, lytic effect with morphological alteration of embryo and eggshell; and type 3, lytic effect with morphological alteration of embryo and eggshell, besides hyphal penetration and internal egg colonization. P. chlamydosporia demonstrated ovicidal activity (p < 0.05) on the eggs of T. vulpis in the studied intervals presenting type 3 effect of 29.5% (VC1) and 36.5% (VC4), 59.5% (VC1) and 2.5% (VC4), 94.8% (VC1) and 2.95% (VC4) at 7, 14 and 21 days, respectively. The other fungi showed no type 3 effect. P. chlamydosporia should be a potential biological control agent of T. vulpis eggs.
  • Imagem de Miniatura
    Item
    In vitro predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Ancylostoma ceylanicum third-stage larvae
    (Veterinary Microbiology, 2010-05-03) Braga, Fabio R.; Silva, André R.; Carvalho, Rogério O.; Araújo, Jackson V.; Guimarães, Pedro Henrique G.; Fujiwara, Ricardo T.; Frassy, Luiza N.
    The potential role of companion animals as reservoirs for zoonotic diseases has been recognised as a significant public health problem worldwide. Ancylostoma ceylanicum is the only ancylostomatidae species known for infecting human beings. This article aimed to compare the predatory capacity of predatory fungi isolates Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34), Monacrosporium sinense (SF53) and Arthrobotrys robusta (I31) on A. ceylanicum infectious larvae (L3) in a 2% water–agar plate. There was no predatory capacity variation among the fungi tested (P > 0.05) over the 7-day period experimental assay. When compared to the control (without fungi), there was a significant reduction (P < 0.05) of 95.6%, 85.1%, 87.4% and 90.2% on the A. ceylanicum L3 mean recovered from treatments with isolates AC001, NF34, SF53 and I31, respectively. Regarding linear regression coefficients, negative values were noted for treatments, therefore indicating A. ceylanicum non-predated larvae reduction over 7 days. In this work, all predatory fungi isolates were efficient at capturing and destroying in vitro the A. ceylanicum L3; therefore being able to be used as biological controllers of such nematode.
  • Imagem de Miniatura
    Item
    Predatory activity of the nematophagous fungus Duddingtonia flagrans on horse cyathostomin infective larvae
    (Tropical Animal Health and Production, 2010-03-07) Braga, Fabio R.; Araújo, Jackson V.; Silva, André. R.; Carvalho, Rogério O.; Araujo, Juliana M.; Ferreira, Sebastião R.; Benjamin, Laércio A.
    This work was performed to determine the predatory capacity in vitro of the nematophagous fungus Duddingtonia flagrans (isolate AC001) on cyathostomin infective larvae of horse (L3). The experimental assay was carried out on plates with 2% water-agar (2% WA). In the treated group, each plate contained 1.000 L3 and 1.000 conidia of the fungus. The control group without fungus only contained 1.000 L3 in the plates. Ten random fields (4 mm diameter) were examined per plate of treated and control groups, every 24 h for seven days under an optical microscope (10× and 40× objective lens) for non-predated L3 counts. After 7 days, the non-predated L3 were recovered from the Petri dishes using the Baermann method. The interaction there was a significant reduction (p < 0.01) of 93.64% in the cyathostomin L3 recovered. The results showed that the D. flagrans is a potential candidate to the biological control of horse cyathostomin L3.
  • Imagem de Miniatura
    Item
    Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses
    (Research in Veterinary Science, 2012-11-22) Tavela, Alexandre de Oliveira; Araújo, Jackson Victor de; Braga, Fábio Ribeiro; Silveira, Wendeo Ferreira da; Silva, Vinicius Herold Dornelas e; Carretta Júnior, Moacir; Borges, Luana Alcântara; Araujo, Juliana Milani; Benjamin, Laércio dos Anjos; Carvalho, Giovanni Ribeiro; Paula, Alessandra Teixeira de
    The predatory nematophagous fungi have been used as an alternative control of gastrointestinal nematodes of domestic animals in natural and laboratory conditions. However, it is unclear if the association of some of these species could bring some kind of advantage, from a biological standpoint. In this context, this study consisted of two tests in vitro: in assay A, the assessment of the viability of the association of pellets in sodium alginate matrix containing the fungus Duddingtonia flagrans (AC001) and Monacrosporium thaumasium (NF34) and its predatory activity on infective larvae (L3) of cyathostomin after passing through the gastrointestinal tract of horses and assay B, assessment of the cyathostomin L3 reduction percentage in coprocultures. Twelve crossbred horses, females, with a mean weight of 356 kg and previously dewormed were divided in three groups with four animals each: group 1, each animal received 50 g of pellets containing mycelial mass of the fungus D. flagrans and 50 g of pellets of the fungus M. thaumasium, associated and in a single oral dose; group 2, 100 g of pellets containing D. flagrans and 100 g of pellets containing M. thaumasium, associated and in a single oral dose; group 3, control. Faecal samples were collected from animals in the treated and control groups at time intervals of 12, 24, 36, 48, 60 and 72 h after the administration of treatments and placed in Petri dishes containing 2% water-agar (assay A) and cups for coprocultures (assay B). Subsequently, 1000 cyathostomin L3 were added to each Petri dish (assay A) and 1000 cyathostomin eggs were added to each coproculture (assay B) of fungi-treated and control groups. At the end of 15 days, there was observed that the two associations of pellets containing the fungi tested showed predatory activity after passing through the gastrointestinal tract of horses (assay A). In assay B, all the intervals studied showed reduction rate in the number of L3 recovered from coprocultures exceeding 80%. However, no difference (p > 0.01) was seen in recovery of not predated L3 between the fungi-treated groups in the time intervals studied. The results obtained showed that the associations of pellets (50 or 100 g of each fungal isolate) were viable after passage through the gastrointestinal tract in horses and could be used in natural conditions.