Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11852

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Lactic acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools to control Listeria monocytogenes biofilms in food processing facilities
    (Molecular Biotechnology, 2018-09) Camargo, Anderson C.; Todorov, Svetoslav D.; Chihib, N. E.; Drider, D.; Nero, Luís A.
    Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are “friendly” antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
  • Imagem de Miniatura
    Item
    Genotypic and antimicrobial characterization of pathogenic bacteria at different stages of cattle slaughtering in southern Brazil
    (Meat Science, 2016-01-26) Loiko, Márcia R.; Paula, Cheila M.D. de; Langone, Ana C.J.; Rodrigues, Rochele Q.; Cibulski, Samuel; Rodrigues, Rogério de O.; Camargo, Anderson C.; Nero, Luís A.; Mayer, Fabiana Q.; Tondo, Eduardo C.
    Meat can be contaminated in different stages of the slaughtering process and the identification of these stages is the starting point to implement adequate control measures. The objectives of this study were to assess the presence of pathogenic microorganisms in cattle carcasses, to identify the most important contamination points of the slaughtering process, and to evaluate the possible risk factors related to them in a cattle slaughterhouse. To this aim, 108 cattle carcasses were sampled at three stages of the slaughtering process: Point 1 (hides after bleeding); Point 2 (carcasses after hide removal); and Point 3 (carcasses immediately after division). Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Livingstone were isolated from the carcasses. Phenotypic and genotypic characterization indicated that there was cross-contamination among animals, since bacteria with identical genotypic and phenotypic profiles were isolated from different animals at the same sampling day. Furthermore, this is the first report about the isolation of E. coli O157:H7 in a bovine slaughterhouse from southern Brazil.
  • Imagem de Miniatura
    Item
    Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes
    (Revista Argentina de Microbiología, 2017-09-23) Todorov, Svetoslav D.; Paula, Otávio A.L.de; Camargo, Anderson C.; Lopes, Danilo A.; Nero, Luís A.
    The Listeria monocytogenes strains selected in the present study exhibited similar behavior in biofilm formation, independently of the tested conditions (bacteriocin from L. plantarum ST8SH, vancomycin, propolis (a natural antimicrobial product) and EDTA (chelating agent)), individual or in associations. The individual application of vancomycin had better inhibitory activity than that of propolis and EDTA; however, the association of the previously mentioned antimicrobial agents with bacteriocins resulted in better performance. However, when we compared the effects of vancomycin, propolis and EDTA, we could clearly observe that the combined application of bacteriocin and vancomycin was more effective than the combination of bacteriocin and propolis, and bacteriocin and EDTA. Considering the current need to reduce the use of antimicrobials and chemical substances in food processing, propolis can represent an alternative to improve the inhibitory effect of bacteriocins against L. monocytogenes biofilm formation, based on the obtained results. In general, high concentrations of bacteriocin produced by L. plantarum ST8SH were more effective in biofilm inhibition, and similar results were observed for vancomycin and propolis; however, all tested EDTA concentrations had similar effect on biofilm formation.