Fisiologia Vegetal

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/185

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 18
  • Imagem de Miniatura
    Item
    Participação do silício nos processos de absorção, translocação e atenuação da toxicidade do arsênio em alface (Lactuca sativa L.)
    (Universidade Federal de Viçosa, 2022-08-18) Gomes Filho, Antonio Aristides Pereira; Oliveira, Juraci Alves de; http://lattes.cnpq.br/1614120466800601
    O arsênio (As) causa a superprodução de espécies reativas de oxigênio (EROs) que acarreta danos em todo o metabolismo vegetal. Plantas contaminadas representam sério risco à saúde, visto que o consumo de alimentos contaminados é uma das formas de intoxicação em seres humanos. O silício é um elemento benéfico para plantas e reconhecido por aliviar o estresse abiótico, incluindo o estresse por As. Portanto, buscamos avaliar o efeito do silício, iônico e nanoparticulado, na mitigação do estresse por As em alface. Para isso, plantas de alface foram cultivadas hidroponicamente por 40 dias e, após aclimatação por 5 dias, foram submetidas a 50 μM de arsenito (As III ) e arsenato (As V ) e 2 mM de silício iônico (Si) e silício nanoparticulado (SiNP) durante dois períodos de exposição (24 e 72 h). Foram realizadas análises relacionadas a anatomia, fotossíntese e bioquímica dessas plantas. Os resultados mostraram que o As, tanto As III quanto As V , causa efeitos negativos sobre todos os parâmetros avaliados e ambas as formas de silício foram capazes de diminuir o estresse por As, por meio da diminuição da absorção e da concentração nas folhas, melhoria nos aspectos anatômicos e modulação da maquinaria antioxidante, onde se destaca uma reduzida peroxidação lipídica. Além disso, contatamos que nanopartículas de silício são tão eficientes quanto a forma iônica na diminuição do estresse por As. Palavras-chave: Estresse oxidativo. Sistema antioxidante. Nanopartículas de silício.
  • Imagem de Miniatura
    Item
    Proteomic and metabolic impacts of the lack of 2-oxoglutarate dehydrogenase E1 subunit in Arabidopsis thaliana
    (Universidade Federal de Viçosa, 2022-04-29) Vargas, Jonas Rafael; Nesi, Adriano Nunes; http://lattes.cnpq.br/9028236058582130
    The enzyme 2-oxoglutarate dehydrogenase (2OGDH) is a tricarboxylic acid cycle enzyme. This enzyme is a multi-enzymatic complex formed by three subunits that together are responsible for catalyzing the conversion of 2-oxoglutarate (2OG) into succinyl-CoA with the release of NADH and CO 2 in the mitochondrial matrix. This enzyme is described as an important point of regulation and link between the metabolism of carbon and nitrogen since in its absence, important processes in the plant such as respiration, photosynthesis and nitrogen assimilation are altered. One way this enzyme exerts control over the metabolism is through the control in the levels of its substrate, 2OG, that is also used for the synthesis of amino acids in the chloroplast. In addition, 2OG plays a role in cell signaling and expression regulation through PII proteins and the 2-oxoglutarate-dependent dioxygenases. In order to help elucidate responses associated with the lack of specific subunits of 2OGDH complex, we set out to analyze the impact caused by the lack of the E1 subunit of the 2OGDH enzyme on the proteome of plants grown under control conditions and also approach the contributions of this enzyme in the response of plants to imposition and recovery of abiotic stress. As a result, we observed that the lack of the E1 subunit of the 2OGDH enzyme is related to a reduction in photosynthetic and photorespiratory metabolisms proteins that may explain the large growth reductions observed in the mutant plants. We also observed that during the period of stress and recovery, the lack of the E1 subunit has a greater impact on the metabolism of roots that respond more quickly to stress, where alternative pathways such as GABA shunt can be activated in order to overcome the lack of this enzyme, and during recovery carbon metabolism is prioritized over nitrogen in the roots. Keywords: 2-oxoglutarate dehydrogenase. Proteome. Abiotic stress. Respiration. Arabidopsis
  • Imagem de Miniatura
    Item
    Role of mitochondrial thioredoxin for redox regulation in the metabolism of Arabidopsis Thaliana
    (Universidade Federal de Viçosa, 2017-03-16) Pereira, Paula da Fonseca; Nesi, Adriano Nunes; http://lattes.cnpq.br/6419216674405263
    Redox-dependent changes substantially influence the functional activity of several proteins and participate in the regulation of the most vital cellular processes. Accordingly, thioredoxins (Trxs), small proteins containing a redox active disulfide group within its catalytic domain, have a fundamental role in the regulation of the redox environment of the cell. In plants, Trxs were early identified as mediators between light-driven electron transport and dark carbohydrate metabolism in chloroplasts. In other cell compartments than plastids, and in particular mitochondria, a growing body of information concerning Trx redox regulation has been obtained with the advent of proteomics and mass spectrometry-based techniques. Extraplastidial Trx system is comprised of two highly similar isoforms of NADPH-dependent Trx reductase, A and B, that are encoded by two distinct genes in Arabidopsis, whose gene products are denominated NTRA and NTRB and are both target to cytosol and mitochondria. The extraplastidial Trx system is also composed of several Trx h (in the cytoplasm) or Trx h and o in mitochondria which are, in turn, reduced by NTRA and NTRB. Previous studies showed that, in contrast to ntra and ntrb single knockout mutants, which show no visible phenotypic modifications under normal conditions, the double ntra ntrb mutant exhibit major modification differences. Previous studies have provided a significant contribution to our understanding of the TRX system in plants; however, the metabolic impact of this system has not been comprehensively evaluated. In order to gain more insight into the physiological and metabolic function of TRX system, the present study aimed to investigate the functional significance of Trx in cytosol and mitochondria by using an extensive steady state metabolic characterization of T-DNA insertional lines in Arabidopsis thaliana. That being said, here we focused on the investigation of the functional roles of TRXs in response to stress conditions and how Trxs and the regulated pathways interact to adjust to different cellular and metabolic requirements under normal growth conditions or following stress. In brief, the results presented here provided several novel findings and generated, at least preliminary, mechanistic interpretation of the impact of redox regulation on plant growth and carbon central metabolism. First, we characterized ntra ntrb double knockout mutant and two lines of the mitochondrial AtTRX-o1 subjected to multiple drought episodes. Our results indicate that Trx mutant plants are able to better cope with drought stress, which is probably linked with a lower energetic expenditure that would allow a faster recover in Trx mutants. In addition, we demonstrated the existence of a drought memory in plants by examining differential acclimative mechanisms associated with drought tolerance in Trx mutants of the mitochondrial Trx pathway in Arabidopsis. Moreover, it seems likely that this differential acclimation involves the participation a set of metabolic changes as well as redox poise alteration following recovery. The main results indicate that prior drought exposure is able to affect the subsequent response, indicating the occurrence of stress memory in drought stressed Arabidopsis plants. In addition, by evaluating physiological and metabolic responses of ntra ntrb and trxo1 mutants following high CO 2 enrichment and by the characterization of mitochondrial trxh2 knockout mutants, we demonstrate several evidences suggesting the importance of redox regulation by mitochondrial Trxs on stomatal function. Collectively, our data suggest a significant modulation of stomatal function by organic acids at high CO 2 in Trx mutants and, at the same time, they demonstrate that elevated CO 2 partly restored the metabolic response, including the intermediates of the TCA cycle, in Trx mutants. Overall, the results obtained are discussed both in terms of the importance of Trx for redox regulation in plant cell metabolism and with regard to the contribution that it plays in terms of total cellular homeostasis. The results discussed here not only provide important insight into the role of mitochondrial Trx system on the TCA cycle but also present a roadmap by which the role of Trx in the regulation of other key metabolic reactions of the mitochondria.
  • Imagem de Miniatura
    Item
    Relações coordenadas entre ciclo TCA e ciclo celular em células específicas em resposta ao alumínio em Arabidopsis thaliana
    (Universidade Federal de Viçosa, 2020-11-06) Silva, Welder Alves da; Araújo, Wagner Luiz; http://lattes.cnpq.br/8820367890261822
    A maioria dos estudos demonstrando os mecanismos pelos quais as plantas resistem à presença do alumínio (Al) estão associados à contribuição de ácidos orgânicos (AOs). Com efeito, pouco ou nada parece ter sido explorado acerca de como células radiculares específicas modulam sua expressão gênica para lidar com tal condição. Não obstante, trabalhos anteriores revelam que, na presença de Al, uma resposta central é a reprogramação do ciclo dos ácidos tricarboxílicos (ciclo TCA). Ademais, agentes genotóxicos, incluindo o Al, induzem pausas no ciclo celular para que as células tenham tempo para reparar o DNA danificado e não transmiti-lo às células- filha. No entanto, pouco ou nada se sabe acerca de como o Al conecta o reparo do DNA ao metabolismo mitocondrial, bem como e em que extensão essa conexão impacta nas divisões celulares na presença do Al. Portanto, o presente estudo avaliou aspectos chaves dos ciclos TCA e celular em Arabidopsis thaliana, em um nível pós-transcricional e célula-específico de expressão gênica, responsáveis por conferir resistência ao Al. Buscou-se, também, investigar se o perfil de metabólitos na raiz inteira está mais intimamente correlacionado às análises de expressão gênica observadas nas células corticais, comprometidas com a proteção do órgão, ou nas células do centro quiescente, comprometidas com a sobrevivência e a manutenção da identidade das demais células. Para tanto, foram utilizadas plantas de Arabidopsis thaliana expressando a construção p:GFP-FLAG-RPL18, e com promotores individuais (i) Cauliflower mosaic virus 35S (p35S:FLAG-RPL18), quase constitutivo; (ii) plastid endopeptidase (pPEP:FLAG-RPL18), específico do córtex radicular das zonas de alongamento e maturação; e (iii) SCARECROW (pSCR:FLAG-RPL18), específico do centro quiescente e endoderme radicular. Os resultados ora obtidos apontam que, nas linhas transgênicas p35S e pSCR, a presença de Al alterou a expressão de genes envolvidos com o ciclo celular, ao passo que foram verificadas alterações na expressão de genes envolvidos com o ciclo TCA em todas as linhas, especialmente na pPEP. Tais resultados estão em consonância com as mudanças verificadas nas três linhas no que tange ao perfil de metabólitos, destacadamente o de AOs. Em adição, ao se investigar o translatoma de células com identidades distintas, foi possível observar que: (i) a expressão gênica é, aparentemente, regulada diferencialmente de acordo com essa identidade (status de diferenciação celular, função celular, etc.) e (ii) a expressão gênica célula-específica,particularmente em células indiferenciadas (centro quiescente e endoderme) e diferenciadas (zona cortical das regiões de alongamento e maturação) explica, em larga extensão, como plantas de Arabidopsis respondem à presença de Al mediante uma reprogramação da expressão gênica em grupos específicos de células radiculares. Tomados em conjunto, estes resultados sugerem uma alta plasticidade, a nível metabólico e de expressão gênica célula-especifica, como importante componente das respostas ao Al em Arabidopsis thaliana. Palavras-chave: Alumínio. Translatoma. Célula-específico. Ciclo TCA. Ciclo celular.
  • Imagem de Miniatura
    Item
    Effects of salt stress on growth and metabolism of tomato (Solanum lycopersicum L.) plants associated with high concentration of carbon dioxide
    (Universidade Federal de Viçosa, 2020-11-06) Brito, Fred Augusto Lourêdo de; Ribeiro, Dimas Mendes
    Soil salinity is an important environmental factor that limits the crop yield. On the other hand, the elevated CO2 concentration (e[CO2]) is able to mitigate the negative effects of salt stress on crop yield by stimulating photosynthetic rate in many C3 species, including Solanum lycopersicum. However, the impact of soil salinization on the relationship between biomass allocation, hormone biosynthesis and the primary metabolism of tomato plants under e[CO2] are hitherto not well understood. In this context, tomato plants grown under salt stress showed high Na+ concentration in tissues under both ambient [CO2] (a[CO2]) and e[CO2]. Under a[CO2], plants treated with NaCl showed lower accumulation of biomass compared to untreated plants. However, e[CO2] restored the growth of tomato plants under saline stress by reducing concentration of abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1- carboxylic acid in leaves and roots. In addition, plants treated with NaCl under a[CO2] showed reduction of the concentration of Krebs Cycle intermediates and increase of amino acids glycine and serine, while the plants under e[CO2] treated with NaCl presented the recovery of these parameters to the levels of the control plants. These findings led to a new questioning whether plants with alterations in ABA biosynthesis present differential strategies of tolerance to saline stress under e[CO2]. Thus, we analyzed tomato plants cv. Micro-Tom (MT), ABA-deficient mutant notabilis (not) and plants with high ABA concentration (NCED) submitted to salt stress. The growth of not plants was more affected in relation to MT and NCED plants, mainly under conditions of salt stress under both [CO2]. On the other hand, e[CO2] led to increases in total biomass and leaf area for all genotypes under saline stress, compared to a[CO2]. In addition, NCED mutants showed greater growth in relation to the MT and not genotypes under e[CO2] in control and saline conditions. e[CO2] caused an increase in photosynthesis and reduction of photorespiration in the MT, not and NCED treated with NaCl compared to a[CO2]. In addition, e[CO2] induced changes in the primary metabolism which were associated with increases in dark respiration, especially of MT and not genotypes under saline stress. Taken together, our results suggest that e[CO2] alleviates the effects of saline stress on plants through increased photosynthesis, reduced photorespiration and reprogrammed primary metabolism by mechanisms independent of ABA concentration. Keywords: Photosynthesis. Respiration. Primary metabolism. Hormonal regulation. Salt stress. Tomato plant
  • Imagem de Miniatura
    Item
    Boron: nothing boring about this intriguing element
    (Universidade Federal de Viçosa, 2019-09-20) Pereira, Greice Leal; Araújo, Wagner Luiz; http://lattes.cnpq.br/0182527666982486
    Although Boron (B) is an essential micronutrient for plant growth and development, both deficiency and toxicity of B are important problems that severely affect agricultural production. This fact aside, the impact of these stresses in plants are still poorly understood. Thus, plants may respond differently to B availability through local and systemic signaling, whose mechanisms are yet poorly understood. Previous studies further suggest that ethylene plays a key role in the responses induced by B deficiency in the root system. The main goal of this work was to better understand the physiological and metabolic mechanisms underlying stress caused by B deficiency and excess, as well as to better understand the connections between ethylene and B in modulating plant growth. For this purpose, the responses of different conditions of B availability (deficiency, adequate and toxicity) were investigated in Arabidopsis and ethylene mutant tomato (Solanum lycopersicum) plants. The results obtained in this work demonstrate physiological and metabolic alterations in response to the contrasting conditions of B and that these responses are likely able to generate energy and maintain normal growth in B deficiency. It was also observed an association between B and ethylene levels mediating physiological and metabolic changes. Finally, our study sheds light on the complex relationship between B and ethylene and their overall effects on plant growth and development. The results described here helps to understand the plant's response mechanism to B deficiency and excess, and paves way for identifying the signaling pathways and genes involved in homeostasis and B accumulation in tissues. Although the absence of alterations in plant growth coupled with changes in fruit yield and seed production observed in response to change in the levels of ethylene is somewhat surprising it is tempting to speculate that pathways of energy metabolism and hormone metabolism are most likely highly interconnected at the whole plant level in a manner that allows the plant to prioritize reproductive organs during senescence under B stressfully conditions. It will be important to establish the functional significance of this observation in future studies in order to fully understand the molecular regulatory hierarchy regulating ethylene balance at the whole-plant level, particularly in response to fluctuations in B levels. Key-words: B deficiency, B toxicity, Ethylene, Central Metabolism.
  • Imagem de Miniatura
    Item
    Reviewing the functions of ethylene in growth and central metabolism in tomato
    (Universidade Federal de Viçosa, 2017-03-13) Nascimento, Vitor de Laia; http://lattes.cnpq.br/9069530912654269
    It is responsible for regulating various aspects of the plant life cycle, including seed germination, root initiation, root development, floral development, sexual determination, fruit ripening, senescence and responses to biotic and abiotic stresses. The biosynthetic pathway and the series of reactions to formation of ethylene are already well established. In addition, the ethylene signaling process is also well characterized in that receptors on the membranes recognize this gas and a signaling cascade is activated to the nucleus where ethylene responsive genes are expressed. Much is known about how phytohormones in general influence plant development or how it relates to the signaling and transduction of information that help these organisms to adapt to the most diverse conditions. On the other hand, little is known about its direct relationship with carbon metabolism. The main goal of this work was to provide an enhanced comprehension coupled with a revalidation of the functional role of ethylene as a growth-related phytohormone. Remarkably, the results described within this thesis further demonstrate that ethylene, plant growth and carbon metabolism are strictly associated. Interestingly, ethylene seems to act directly on plant growth by inhibit or, in absence of your perception, allow the increased growth in tomato plants. Thus, it was demonstrated that an exogenous application of this hormone is able to reduce plant growth coupled with several morphological and metabolic adjustments. By contrast, in tomato Never ripe mutant plants, that are ethylene insensitive, growth is fairly induced coupled with significant changes in carbon assimilation characterized by increases in photosynthesis and an extensive metabolic reprogramming. Finally, after revisiting the possible functions of ethylene as a plant growth regulator, we can conclude that a biphasic effect of ethylene occurs in tomato once opposite effects are exhibited on plant growth. It is reasonable to suggest that metabolic and biochemical mechanisms that govern these two phenomena are not necessarily opposites.
  • Imagem de Miniatura
    Item
    Possível papel do silício, mediado pelo etileno, na formação do aerênquima em raízes de arroz
    (Universidade Federal de Viçosa, 2018-02-19) Machado, Kleiton Lima de Godoy; Da Matta, Fábio Murilo; http://lattes.cnpq.br/3887186480168323
    O arroz é a base alimentar de quase metade da população mundial. O arroz acumula silício e possui transportadores específicos para absorção desse elemento. O silício afeta a anatomia das raízes de arroz, aumentando a lignificação da endoderme e exoderme e afeta o metabolismo do arroz, contribuindo para que a planta produza mais etileno em suas raízes. Contudo, praticamente nada se sabe sobre como o silício afeta o metabolismo e o desenvolvimento das plantas, sob condições não estressantes. Sabe-se que o etileno constitui um dos sinais responsáveis pela morte celular programada, processo pelo qual aerênquimas são formados. Dessa forma, o objetivo do presente trabalho foi testar a hipótese de que o silício aumenta a porosidade da raiz, via maior desenvolvimento das lacunas do aerênquima radicular, o que estaria associado ao incremento da produção de etileno nesse órgão A fim de testar esta hipótese, foram realizadas análises anatômicas, de abundância de transcritos, níveis de alguns fitohormônios e quantificação de perfil metabólico de raízes de plantas de arroz tratadas ou não com silício. O silício foi associado a um aumento significativo da porosidade da raiz, estimada pelo aumento do teor de lacunas do aerênquima, maior produção de etileno e maiores níveis de transcritos relacionados ao metabolismo de etileno, biossíntese de paredes celulares, glicólise, entre outros, nos tecidos radiculares. Além disso, plantas suplementadas com silício tiveram, aparentemente, maior giro do ciclo dos ácidos tricarboxílicos e da via da fermentação (produção de lactato), provavelmente para satisfazer a demanda de processos energeticamente custosos, como a morte celular programada nessas raízes. Também foram observadas mudanças importantes nos níveis de aminoácidos. Os resultados sugerem que o silício altera a fisiologia do arroz aumentando a porosidade da raiz por intermédio do fitohormônio etileno.
  • Imagem de Miniatura
    Item
    Plasticidade em Eucalyptus sp. à disponibilidade hídrica: respostas fisiológicas e metabólicas em clones contrastantes à Seca de Ponteiros do Vale do Rio Doce submetidos a ciclos de encharcamento e secagem
    (Universidade Federal de Viçosa, 2017-02-23) Oliveira, Franciele Santos; Araújo, Wagner Luiz; http://lattes.cnpq.br/0134560512686421
    A demanda por madeira vem, nos últimos anos, sofrendo largos incrementos em grande parte devido à sua imensa utilização em diversos setores da indústria. Cumpre ressaltar que o tipo de solo, condições climáticas, dentre outros fatores podem largamente afetar o desenvolvimento das plantas, em particular em Eucalyptus sp. Cabe mencionar, no entanto, que novas áreas de cultivo podem apresentar características contrastantes como, por exemplo, solos que permanecem encharcados por um determinado período e também áreas que sofrem com limitações na disponibilidade hídrica. No Brasil, uma anomalia relatada em regiões que passam por situações de encharcamento, conhecida como Seca de Ponteiros do Eucalipto Vale do Rio Doce (SPEVRD), tem ocasionado vários distúrbios fisiológicos em clones de eucalipto. Embora alguns estudos tenham sido realizados no intuito de se compreender essa anomalia, pouco se sabe acerca dos mecanismos adotados por esses materiais frente a ciclos consecutivos de estresse e como a deficiência hídrica modula essas respostas. Nesse sentido, a presente proposta buscou compreender os mecanismos fisiológicos e metabólicos associados a essas respostas diferenciais, ao avaliar a plasticidade frente às flutuações na disponibilidade hídrica em clones de Eucalyptus sp. submetidos a ciclos de encharcamento e secagem. Para tanto, esse trabalho foi dividido em duas partes independentes, mas complementares. Na primeira parte avaliaram-se os impactos metabólicos em clones de Eucalyptus sp. com tolerância diferencial a SPEVRD frente a um ciclo de encharcamento seguido por um ciclo de déficit hídrico. Na segunda parte desse trabalho o mesmo material foi submetido a dois ciclos de estresse (encharcamento e deficiência hídrica) seguidos por períodos de completa recuperação entre os estresses. Para isso, em ambos os experimentos utilizou-se clones contrastantes com tolerância diferencial à SPEVRD sendo um tolerante e outro sensível em um esquema fatorial 2x2 (dois clones e dois regimes hídricos) com seis repetições. Ao longo de todos os experimentos foram mensurados os parâmetros de trocas gasosas e fluorescência da clorofila a sendo a fotossíntese a variável utilizada como indicador da recuperação. Com isso, após os estresses, em ambas as partes, procurou-se promover a recuperação completa desses materiais baseada na recuperação das taxas fotossintéticas a níveis similares aos das plantas controle (ausência de estresse). Ademais, em momentos específicos (antes da imposição do estresse, após o encharcamento, recuperação, déficit hídrico e recuperação) foram coletadas amostras para análises bioquímicas. No primeiro experimento, ciclo curto, os resultados obtidos indicam que, embora o clone tolerante a SPEVRD apresente reduções precoces nos parâmetros de trocas gasosas e também no  w comparadas ao clone sensível, a presença de mecanismos de quiescência parece ser de suma importância para a tolerância diferencial observada a nível de campo. Além disso, a alocação diferencial de biomassa, destacando-se aumentos expressivos na biomassa radicular, parece auxiliar a uma maior “tolerância” desse clone aos dois eventos distintos e sucessivos de estresse. De modo interessante, no segundo experimento, os resultados indicam que os clones sujeitos a ciclos recorrentes de estresses apresentam respostas distintas daquelas observadas após uma única situação de estresse e ainda é possível inferir que a imposição de ciclos consecutivos de estresse promova respostas que permitam, de certo modo, favorecer um melhor desempenho do clone tolerante. Em adição, é plausível sugerir que a aclimatação diferencial de clones de eucalipto a eventos múltiplos de estresse hídrico (por falta e excesso) parece ser dependente de um reajuste fino de processos metabólicos incluindo fotossíntese, respiração e metabolismo de açúcares e aminoácidos indicando a ocorrência de uma possível “memória ao estresse”.
  • Imagem de Miniatura
    Item
    Importância fisiológica do catabolismo de lisina durante estresse salino em Arabidopsis thaliana
    (Universidade Federal de Viçosa, 2017-12-15) Neves, Tárik Galvão; Araújo, Wagner Luiz; http://lattes.cnpq.br/0345441921253142
    Solos salinos, aquele em que as concentrações de sal excedem à 10 mM de cloreto de sódio (NaCl), geram danos significativos que afetam o crescimento e desenvolvimento de cultivos agrícolas. A ocorrência de solos salinos é comum em regiões áridas e semi-áridas. No entanto, áreas agricultáveis podem sofrer com a salinização onde, em conjunto com um sistema de drenagem natural ou artificial ineficaz, a água de irrigação, ainda que de boa qualidade, pode gerar o acúmulo de sal na rizosfera. Os impactos em plantas causados pelo excesso de sal nos solos culminam em (i) estresse osmótico que reduz o potencial hídrico do solo, dificultando a obsorção de água pelas raízes, e (ii) desbalanço iônico celular caso altas concentrações de Na + ou Cl - forem absorvidos. Em conjunto, os danos causados pela presença de altas concentrações de NaCl na solução do solo diminuem a absorção de água e nutrientes, interferindo em processos metabólicos importantes como fotossíntese e respiração. Cumpre ressaltar que as mitocôndrias de plantas desempenham deversas funções importantes para o metabolismo vegetal e, em condições de estresse salino, a geração de energia mediada pelo ciclo dos ácidos tricarboxílicos (TCA) e pela cadeia transportadora de elétrons mitocondrial (mETC) são afetados pelo déficit de carboidratos provenientes da fotossíntese. Nesse contexto, vias alternativas da respiração são induzidas fornecendo elétrons para mETC e compostos intermediários para o ciclo do TCA. Estudos recentes mostram que a degradação de proteínas e catabolismo de aminoácidos podem gerar incrementos nas taxas respiratórias em condições de escassez de carbono. Tanto a biossíntese quanto o catabolismo de lisina apresentam uma estreita ligação com o metabolismo energético em especial com o ciclo do TCA. Dessa forma, o presente trabalho buscou investigar o papel da lisina nas respostas fisiológicas e metabólicas em resposta ao estresse salino. Para tanto, os impactos ocasionados ao crescimento e metabolismo foram analisados em mutantes na biossíntese de lisina fornecendo evidências fenotípicas e fisiológicas da importância de lisina para uma maior tolerância ao estresse salino em Arabidopsis thaliana. Plântulas de Arabidopsis com redução da atividade da enzima L,L-diaminopimelato aminotransferase (dapat) mostraram uma maior sensibilidade ao estresse salino quando comparadas ao seu tipo selvagem, apresentando baixa germinação de sementes em todos tratamentos com estresse salino, enquanto mutantes para a dihidropicolinato sintase (dhdps-2) apresentaram maior tolerância ao estresse salino. Além disso, foi observado em todos genótipos reduções progressivas nos valores da eficiência fotoquímica máxima do fotossistema II (F v /F m ) ocorrendo de forma mais acelerada quando submetidas a 150 mM de NaCl. Concomitantemente, diminuições nos teores de clorofila total e na razão clorofila a / clorofila b foram observadas. Não obstante, o estresse salino induziu o acúmulo de aminoácidos totais, bem como diminuições nas concentrações de proteínas totais e amido. Assim, é plausível sugerir que outros compostos, que podem atuar como osmorreguladores, tiveram papel importante nas respostas aqui observadas. Os resultados apresentados demonstram a importância de lisina como um substrato alternativo para manutenção da homeostase celular em condições de estresse salino.