Fisiologia Vegetal

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/185

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    On the roles of organic acids transport and sucrose metabolism controlling stomatal movements
    (Universidade Federal de Viçosa, 2017-07-19) Medeiros, David Barbosa; Araújo, Wagner Luiz; http://lattes.cnpq.br/2874097229492489
    Regulation of the stomatal movements by osmotic control is a well-documented mechanism that is associated to the transport of solutes coupled with changes in the guard cell metabolism. Potassium and chloride are the main inorganic ions whereas malate and sucrose (Suc) are the main organic osmolytes involved in stomatal movements. Despite the growing body of information concerning the control of stomatal movements, there are, however, several gaps regarding the stomata regulation to be fully elucidated. Thus, understanding stomatal behaviour represents an important step towards enhancement of water use efficiency in plants. Several efforts have been performed to fully characterize the events that occur in guard cells. Experimental data describing distinct aspects of stomatal behaviour have been presented, providing significant insights into guard cell transcriptome, proteome, and metabolome. In this thesis I, initially, revisited the current available omics studies and modelling in guard cells. By doing that, it was possible to demonstrate that the current modelling approaches describe the stomatal conductance in terms of relatively few easy-to- measure variables being unsuitable for in silico design of genetic manipulation. Therefore, we discuss that system biology approach combining modelling and high-throughput assays may be used to elucidate the mechanisms underlying stomatal control allowing a better prediction of phenotypes in the field. Additionally, to obtain a more comprehensive picture of the function of organic acid transport and sucrose metabolism during stomatal movements, three independent but complementary experimental approaches were used to: (i) characterise mutant plants lacking the organic acids channel located at the guard cell plasma membrane (AtQUAC1); (ii) analyse the effects on stomatal behaviour, photosynthetic capacity, and the metabolism due to impaired malate and fumarate accumulation in Arabidopsis leaves; (iii) to investigate the effects of sucrose on the stomatal aperture and the carbon flux during stomatal opening by using stomatal aperture assays and isotope labelling kinetic experiments. Briefly, the results presented here provided several novel findings. Firstly, the inefficient stomatal closure via the repression of AtQUAC1 culminates in higher growth and photosynthetic rates through increased mesophyll and stomatal conductance, followed by changes in organic acids and sugars accumulation in leaves. Secondly, impaired malate and fumarate accumulation throughout the diel cycle in attdt mutants strongly affected mitochondrial metabolism but not plant growth without any impact in both stomata kinetics and photosynthesis. Thirdly, the role of sucrose during stomatal opening was demonstrated to be dose-dependent whilst sucrose is degraded within guard cells during light-induced stomatal opening. Collectively, the results obtained here demonstrate the complex interaction between guard cells and mesophyll and also highlight the role of the mesophyll metabolism as an important player controlling guard cell movements. I further discuss these observations in the context of the current knowledge concerning the metabolic control of stomatal movements, central carbon metabolism, and plant performance.
  • Imagem de Miniatura
    Item
    Alterações fisiológicas em plantas de batata com metabolismo alterado de sacarose
    (Universidade Federal de Viçosa, 2005-08-02) Antunes, Werner Camargos; Loureiro, Marcelo Ehlers; http://lattes.cnpq.br/6454495897097940
    A importância relativa da sacarose na osmorregulação das células- guarda (CG) bem como o papel fisiológico da sintase da sacarose (SuSy) em folhas permanece pouco entendido. Neste trabalho, foram investigadas estas questões via análises dos efeitos da modulação da atividade sacarolítica em CG e, conjuntamente, com uma caracterização fenotípica dos efeitos da redução da expressão do gene da SuSy em plantas transgênicas. Análises de trocas gasosas e de parâmetros biométricos em plantas de batata (Solanum tuberosum L. Désirée) transgênicas antisenso da isoforma SuSy 3, sob controle do promotor constitutivo CaMV 35S, e plantas com superexpressão do gene de invetase de levedura sob controle do promotor S1Δ4, específico de CG, foram investigadas. Por um lado, observou-se redução da condutância estomática (g s ) e uma ligeira redução na taxa da assimilação líquida de CO 2 (A) com a redução na atividade sacarolítica em CG (i.e., plantas SuSy 3 antisenso); o fenótipo oposto foi observado nas plantas transgênicas com aumento da atividade sacarolítica especificamente em CG (i.e., plantas com superexpressão da invertase). Os aumentos em A nas plantas com superexpressão da invertase pôde ser explicado como resultante de menores limitações estomáticas à fotossíntese, em relação aos das plantas-controle. Entretanto, as mudanças em A não foram relacionadas com alterações nas taxas máximas de assimilação do CO 2 derivadas de curvas A/C i daqueles genótipos. A redução moderada em A nas plantas SuSy 3 antisenso foi acompanhada por incrementos na área foliar e massa seca da parte aérea, o quê, provavelmente, poderia estar relacionada com a redução na densidade dos tubérculos. Ainda, plantas SuSy 3 antisenso apresentaram aumentos na atividade da sintase da sacarose-fosfato (SPS) e pirofosforilase da ADP-glicose (AGPase), e um decréscimo na atividade da SuSy e invertases ácidas, refletindo em aumentos nos teores de sacarose e amido nas folhas. Os aumentos nas atividades da SPS e da AGPase podem estar ligados à redução no teores de ortofosfato inorgânico. Não foram observads mudanças significativas na composição da parede celular do limbo foliar. Por outro lado, nas plantas com superexpressão da invertase, nenhuma das mudanças nas atividades enzimáticas e nos níveis de açúcares analisados foi observada. Ressalta-se um incremento nos teores do ácido 3-fosfoglicérico e hexoses-P. Analisando-se em conjunto, estes resultados suportam a hipótese de que mudanças em g s foram principalmente devido a mudanças no metabolismo de sacarose, exclusivamente em CG. Não se obteve evidências, neste trabalho, de que a SuSy 3 possa estar envolvida significativamente na síntese de parede celular nas folhas.
  • Imagem de Miniatura
    Item
    Role of sucrose for tobacco guard cell osmoregulation: osmolyte or substrate?
    (Universidade Federal de Viçosa, 2013-02-27) Daloso, Danilo de Menezes; Loureiro, Marcelo Ehlers; http://lattes.cnpq.br/0306680503261422
    A characterization of transgenic tobacco plants overexpressing potato sucrose synthase 3 gene (NtSuSy3) under control of KST1 promoter was performed in order to analyze the role of sucrose metabolism on GC osmoregulation. Also, we performed a metabolic flux analysis in guard cell enriched epidermal fragment (EF) of Nicotiana tabacum in order to investigate changes in GC metabolism during stomatal aperture light-induced. NtSuSy3 plants showed higher stomatal conductance, transpiration rate, whole plant transpiration, and net photosynthetic rate than wild type (WT). Several changes in GC metabolism were observed in transgenic plants are discussed in the text. In different stomatal aperture light-induced experiments, it was observed a decrease in sucrose content, while no changes were detected in the sugar content in the medium; suggesting that the sugars decreased observed is due to breakdown and not efflux of GC. Using a feeding strategy in EF submitted to NaH13C03 followed by LC-qTOF-MS analysis, a 13 C-enrichment in sucrose, malate, fumarate and glutamine were observed. The possible function of these metabolites for GC osmoregulation are discussed in the text. Taken together, the data showed here provide evidence for another role of sucrose for GC osmoregulation. Our data suggest that sucrose breakdown, not just sucrose accumulation, can be performed to induce stomatal opening in tobacco.
  • Imagem de Miniatura
    Item
    Engineering for desiccation postponement: antisense of sucrose transporter in tobacco specifically on guard cells results in reduced stomatal conductance and increased water use efficiency
    (Universidade Federal de Viçosa, 2009-07-31) Antunes, Werner Camargos; Loureiro, Marcelo Ehlers; http://lattes.cnpq.br/6454495897097940
    It was evaluated the importance of guard cell (GC) sucrose transporter and the role of sucrose as osmotic on GC. We transformed tobacco plants with antisense gene construct for sucrose transporter driven by KST1, GC specific promoter. Transgenic plants GC have less sucrose, more starch and modest increase in K + contents. Low sucrose contents in GC of transgenic lines were associated with low stomatal conductance (g s ), suggesting the importance of sucrose transporter and symplastic sucrose in maintaining low osmotic potential on GC. It was observed rapid starch disappearance when the guard cells are swelling, fact not observed in control plants. By means of low g s tobacco plants demonstrated diffusional (stomatal) restriction of photosynthesis (A), low transpiration rate (E) and low sub-stomatal CO 2 concentration, high A/E and higher carbon rate composition (δ 13 C). However, higher A/E was associated with lower A, consequently, a slower crop growth rate, but not smaller “efficiency index” as showed by relative growth rate. The δ 13 C data confirms the low conductance, showing that it represents a common stomata behavior over all plant development. By means of low g s tobacco plants, we got desiccation postponement phenotype as principal feature of this transformation, being high water saving plants. These results suggest that manipulation of sucrose transport in GC may be developed as a practical mechanism for drought avoidance and water conservation during irrigation. These results illustrate the importance of fine tuning of sucrose metabolism transport and metabolism in the fitness of stomatal function in contributing to plant survival or growth under unfavorable water conditions.