Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    A WW domain-containing protein forms immune nuclear bodies against begomoviruses
    (Molecular Plant, 2018-12-03) Calil, Iara P.; Quadros, Iana P. S.; Araújo, Thais C.; Duarte, Christiane E. M.; Gouveia-Mageste, Bianca C.; Silva, José Cleydson F.; Brustolini, Otávio J. B.; Teixeira, Ruan M.; Oliveira, Cauê N.; Milagres, Rafael W. M. M.; Martins, Gilberto S.; Reis, Pedro A. B.; Machado, Joao Paulo B.; Fontes, Elizabeth P. B.; Chory, Joanne
    The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP–DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.
  • Imagem de Miniatura
    Item
    Revisiting the soybean GmNAC superfamily
    (Frontiers in Plant Science, 2018-12) Melo, Bruno P.; Fraga, Otto T.; Silva, José Cleydson F.; Ferreira, Dalton O.; Brustolini, Otávio J. B.; Carpinetti, Paola A.; Machado, Joao Paulo B.; Reis, Pedro A. B.; Fontes, Elizabeth P. B.
    The NAC (NAM, ATAF, and CUC) genes encode transcription factors involved with the control of plant morph-physiology and stress responses. The release of the last soybean (Glycine max) genome assembly (Wm82.a2.v1) raised the possibility that new NAC genes would be present in the soybean genome. Here, we interrogated the last version of the soybean genome against a conserved NAC domain structure. Our analysis identified 32 putative novel NAC genes, updating the superfamily to 180 gene members. We also organized the genes in 15 phylogenetic subfamilies, which showed a perfect correlation among sequence conservation, expression profile, and function of orthologous Arabidopsis thaliana genes and NAC soybean genes. To validate our in silico analyses, we monitored the stress-mediated gene expression profiles of eight new NAC-genes by qRT-PCR and monitored the GmNAC senescence-associated genes by RNA-seq. Among ER stress, osmotic stress and salicylic acid treatment, all the novel tested GmNAC genes responded to at least one type of stress, displaying a complex expression profile under different kinetics and extension of the response. Furthermore, we showed that 40% of the GmNACs were differentially regulated by natural leaf senescence, including eight (8) newly identified GmNACs. The developmental and stress-responsive expression profiles of the novel NAC genes fitted perfectly with their phylogenetic subfamily. Finally, we examined two uncharacterized senescence-associated proteins, GmNAC065 and GmNAC085, and a novel, previously unidentified, NAC protein, GmNAC177, and showed that they are nuclear localized, and except for GmNAC065, they display transactivation activity in yeast. Consistent with a role in leaf senescence, transient expression of GmNAC065 and GmNAC085 induces the appearance of hallmarks of leaf senescence, including chlorophyll loss, leaf yellowing, lipid peroxidation and accumulation of H 2 O 2 . GmNAC177 was clustered to an uncharacterized subfamily but in close proximity to the TIP subfamily. Accordingly, it was rapidly induced by ER stress and by salicylic acid under late kinetic response and promoted cell death in planta. Collectively, our data further substantiated the notion that the GmNAC genes display functional and expression profiles consistent with their phylogenetic relatedness and established a complete framework of the soybean NAC superfamily as a foundation for future analyses.
  • Imagem de Miniatura
    Item
    Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features
    (BMC Genomics, 2015-10-14) Silva, Priscila Alves; Silva, José Cleydson F.; Caetano, Hanna DN; Machado, Joao Paulo B.; Mendes, Giselle C.; Reis, Pedro AB; Brustolini, Otavio JB; Dal-Bianco, Maximiller; Fontes, Elizabeth PB
    Despite the relevance of the eukaryotic endoplasmic reticulum (ER)-stress response as an integrator of multiple stress signals into an adaptive response, knowledge about these ER-mediated cytoprotective pathways in soybean (Glycine max) is lacking. Here, we searched for genes involved in the highly conserved unfolded protein response (UPR) and ER stress-induced plant-specific cell death signaling pathways in the soybean genome. Previously characterized Arabidopsis UPR genes were used as prototypes for the identification of the soybean orthologs and the in silico assembly of the UPR in soybean, using eggNOG v4.0 software. Functional studies were also conducted by analyzing the transcriptional activity of soybean UPR transducers. As a result of this search, we have provided a complete profile of soybean UPR genes with significant predicted protein similarities to A. thaliana UPR-associated proteins. Both arms of the plant UPR were further examined functionally, and evidence is presented that the soybean counterparts are true orthologs of previously characterized UPR transducers in Arabidopsis. The bZIP17/bZI28 orthologs (GmbZIP37 and GmbZIP38) and ZIP60 ortholog (GmbZIP68) from soybean have similar structural organizations as their Arabidopsis counterparts, were induced by ER stress and activated an ERSE- and UPRE-containing BiP promoter. Furthermore, the transcript of the putative substrate of GmIREs, GmbZIP68, harbors a canonical site for IRE1 endonuclease activity and was efficiently spliced under ER stress conditions. In a reverse approach, we also examined the Arabidopsis genome for components of a previously characterized ER stress-induced cell death signaling response in soybean. With the exception of GmERD15, which apparently does not possess an Arabidopsis ortholog, the Arabidopsis genome harbors conserved GmNRP, GmNAC81, GmNAC30 and GmVPE sequences that share significant structural and sequence similarities with their soybean counterparts. These results suggest that the NRP/GmNAC81 + GmNAC30/VPE regulatory circuit may transduce cell death signals in plant species other than soybean. Our in silico analyses, along with current and previous functional data, permitted generation of a comprehensive overview of the ER stress response in soybean as a framework for functional prediction of ER stress signaling components and their possible connections with multiple stress responses.
  • Imagem de Miniatura
    Item
    Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP- mediated cell death signaling in plants
    (BioMed Plant Biology, 2016-07-12) Reis, Pedro A. B.; Carpinetti, Paola A.; Freitas, Paula P.J.; Santos, Eulálio G.D.; Camargos, Luiz F.; Oliveira, Igor H.T.; Silva, José Cleydson F.; Carvalho, Humberto H.; Dal-Bianco, Maximiller; Soares-Ramos, Juliana R.L.; Fontes, Elizabeth P. B.
    The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.