Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism
    (Nature, 2015-04-30) Zorzatto, Cristiane; Machado, João Paulo B.; Lopes, Kênia V. G.; Nascimento, Kelly J. T.; Pereira, Welison A.; Brustolini, Otávio J. B.; Reis, Pedro A. B.; Calil, Iara P.; Deguchi, Michihito; Sachetto-Martins, Gilberto; Gouveia, Bianca C.; Loriato, Virgílio A. P.; Silva, Marcos A. C.; Silva, Fabyano F.; Santos, Anésia A.; Chory, Joanne; Fontes, Elizabeth P. B.
    Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security^ 1–3 . In virus– plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts^ 1 . In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections^ 2,3 . Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses^ 1,2 . Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP)^ 4–6 , leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.
  • Imagem de Miniatura
    Item
    NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?
    (Bioessays, 2015-09-03) Machado, Joao P. B.; Brustolini, Otavio J. B.; Mendes, Giselle C.; Santos, Anésia A.; Fontes, Elizabeth P. B.
    NIK1 is a receptor‐like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1‐mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down‐regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.
  • Imagem de Miniatura
    Item
    NSP-interacting kinase, NIK: a transducer of plant defence signalling
    (Journal of Experimental Botany, 2010-06-24) Santos, Anésia A.; Lopes, Kênia V. G.; Apfata, Jorge A. C.; Fontes, Elizabeth P. B.
    The NSP-interacting kinase, NIK, belongs to the five leucine-rich repeats-containing receptor-like serine/threonine kinase subfamily that includes members involved in plant development and defence. NIK was first identified by its capacity to interact with the geminivirus nuclear shuttle protein (NSP) and has been strongly associated with plant defence against geminivirus. Recent studies corroborate its function in transducing a defence signal against virus infection and describe components of the NIK-mediated antiviral signalling pathway. This mini-review describes the role of NIK as a transducer of a novel layer of plant innate defence, presents new data on NIK function, and discusses its possible involvement in plant development.
  • Imagem de Miniatura
    Item
    Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus
    (Public Library of Science Pathogens, 2008-12-26) Carvalho, Claudine M.; Santos, Anésia A.; Pires, Silvana R.; Rocha, Carolina S.; Saraiva, Daniela I.; Machado, João Paulo B.; Mattos, Eliciane C.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    The NSP-interacting kinase (NIK) receptor-mediated defense pathway has been identified recently as a virulence target of the geminivirus nuclear shuttle protein (NSP). However, the NIK1–NSP interaction does not fit into the elicitor–receptor model of resistance, and hence the molecular mechanism that links this antiviral response to receptor activation remains obscure. Here, we identified a ribosomal protein, rpL10A, as a specific partner and substrate of NIK1 that functions as an immediate downstream effector of NIK1-mediated response. Phosphorylation of cytosolic rpL10A by NIK1 redirects the protein to the nucleus where it may act to modulate viral infection. While ectopic expression of normal NIK1 or a hyperactive NIK1 mutant promotes the accumulation of phosphorylated rpL10A within the nuclei, an inactive NIK1 mutant fails to redirect the protein to the nuclei of co-transfected cells. Likewise, a mutant rpL10A defective for NIK1 phosphorylation is not redirected to the nucleus. Furthermore, loss of rpL10A function enhances susceptibility to geminivirus infection, resembling the phenotype of nik1 null alleles. We also provide evidence that geminivirus infection directly interferes with NIK1-mediated nuclear relocalization of rpL10A as a counterdefensive measure. However, the NIK1-mediated defense signaling neither activates RNA silencing nor promotes a hypersensitive response but inhibits plant growth and development. Although the virulence function of the particular geminivirus NSP studied here overcomes this layer of defense in Arabidopsis, the NIK1 mediated signaling response may be involved in restricting the host range of other viruses.