Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Imagem de Miniatura
    Item
    Hydrolysis of oligosaccharides in soybean flour by soybean α-galactosidase
    (Food Chemistry, 2015-12) Guimarães, Valéria Monteze; José, Inês Chamel; Oliveira, Maria Goreti de Almeida e; Oliveira, Maria Goreti de Almeida e; Barros, Everaldo Gonçalves de; Moreira, Maurílio Alves; Viana, Simone de Fátima; Rezende, Sebastião Tavares de
    Raffinose oligosaccharides (ROs) make up a substantial part (40%) of the soluble sugars found in soybean seeds and are responsible for flatulence after the ingestion of soybean and other legumes. Consequently, soy-based foods would find a broader approval if the ROs were removed from soybean products or hydrolysed by α-galactosidases. During soybean seed germination, of content the ROs decrease substantially, while the α-galactosidase activity increases. α-Galactosidase was partially purified from germinating seeds by partition in an aqueous two-phase system and ion-exchange chromatography. The enzyme preparation presented maximal activities against ρ-nitrophenyl-α-d-galactopyranoside (ρNPGal) at 60 °C and a pH of 5.0 and the KM app values for ρNPGal, melibiose, and raffinose of the enzyme preparation were 0.33, 0.42, and 6.01 mM, respectively. The enzyme was highly inhibited by SDS, copper, and galactose. Hydrolysis of soybean flour ROs by enzyme preparation reduced the stachyose and raffinose contents by 72.3% and 89.2%, respectively, after incubation for 6 h at 40 °C.
  • Imagem de Miniatura
    Item
    Removal of oligosaccharides in soybean flour and nutritional effects in rats
    (Food Chemistry, 2010-01-15) Brasil, Ana Paula Rodrigues; Rezende, Sebastião Tavares de; Pelúzio, Maria do Carmo Gouveia; Guimarães, Valéria Monteze
    The objectives of this work were to establish a safe and economically viable process for the removal of raffinose oligosaccharides (RO) from soy flour and compare the effects of RO elimination from diets with regard to nutritional parameters by testing in Wistar rats. Debaryomyces hansenii UFV-1 was cultivated in suspension of defatted soy flour (1:10 w/v). An increase in α-galactosidase activity was observed in the medium, with a consequent decrease in the RO concentration. A total reduction of RO was achieved at 36 h of incubation. The diet containing soy flour free of RO presented higher digestibility, 91.28%, in relation to the diet containing soy flour with RO, 87.14%. However, the removal of the oligosaccharides from the diet did not promote a significant improvement in the values of weight gain, and other nutritional parameters tested on rats, during the experimental period of 14 days.
  • Imagem de Miniatura
    Item
    Covalent immobilization of α-Galactosidase from Penicillium griseoroseum and its application in Oligosaccharides Hydrolysis
    (Applied Biochemistry and Biotechnology, 2008-10-21) Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; Queiroz, Marisa Vieira de; Araújo, Elza Fernandes de; Almeida, Maíra Nicolau de; Barros, Everaldo Gonçalves de; Rezende, Sebastião Tavares de
    Partially purified α-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized α-galactosidase showed optimal activity at 45 °C and pH values of 5 and 4, respectively. Immobilized α-galactosidase was more stable at higher temperatures and pH values. Immobilized α-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 °C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized α-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized α-galactosidase respectively. Immobilized α-galactosidase was reutilized eight times without any decrease in its activity.
  • Imagem de Miniatura
    Item
    Characterization and biotechnological application of an acid α-galactosidase from Tachigali multijuga Benth. seeds
    (Phytochemistry, 2008-10-02) Fialho, Lílian da Silva; Guimarães, Valéria Monteze; Callegari, Carina Marin; Reis, Angélica Pataro; Barbosa, Daianny Silveira; Borges, Eduardo Euclydes de Lima; Moreira, Maurilio Alves; Rezende, Sebastião Tavares de
    Tachigali multijuga Benth. seeds were found to contain protein (364 mg g−1 dwt), lipids (24 mg g−1 dwt), ash (35 mg g−1 dwt), and carbohydrates (577 mg g−1 dwt). Sucrose, raffinose, and stachyose concentrations were 8.3, 3.0, and 11.6 mg g−1 dwt, respectively. α-Galactosidase activity increased during seed germination and reached a maximum level at 108 h after seed imbibition. The α-galactosidase purified from germinating seeds had an Mr of 38,000 and maximal activity at pH 5.0–5.5 and 50 °C. The enzyme was stable at 35 °C and 40 °C, but lost 79% of its activity after 30 min at 50 °C. The activation energy (Ea) values for p-nitrophenyl-α-d-galactopyranoside (pNPGal) and raffinose were 13.86 and 4.75 kcal mol−1, respectively. The Km values for pNPGal, melibiose, raffinose, and stachyose were 0.45, 5.37, 39.62 and 48.80 mM, respectively. The enzyme was sensitive to inhibition by HgCl2, SDS, AgNO3, CuSO4, and melibiose. d-Galactose was a competitive inhibitor (Ki = 2.74 mM). In addition to its ability to hydrolyze raffinose and stachyose, the enzyme also hydrolyzed galactomannan.
  • Imagem de Miniatura
    Item
    Purification and characterization of Aspergillus terreus α-Galactosidases and their use for hydrolysis of Soymilk Oligosaccharides
    (Applied Biochemistry and Biotechnology, 2011-02-18) Ferreira, Joana Gasperazzo; Reis, Angélica Pataro; Guimarães, Valéria Monteze; Falkoski, Daniel Luciano; Silva Fialho, Lílian da; Rezende, Sebastião Tavares de
    α-Galactosidases has the potential to hydrolyze α-1-6 linkages in raffinose family oligosaccharides (RFO). Aspergillus terreus cells cultivated on wheat bran produced three extracellular forms of α-galactosidases (E1, E2, and E3). E1 and E2 α-galactosidases presented maximal activities at pH 5, while E3 α-galactosidase was more active at pH 5.5. The E1 and E2 enzymes showed stability for 6 h at pH 4–7. Maximal activities were determined at 60, 55, and 50°C, for E1, E2, and E3 α-galactosidase, respectively. E2 α-galactosidase retained 90% of its initial activity after 70 h at 50°C. The enzymes hydrolyzed ρNPGal, melibiose, raffinose and stachyose, and E1 and E2 enzymes were able to hydrolyze guar gum and locust bean gum substrates. E1 and E3 α-galactosidases were completely inhibited by Hg2+, Ag+, and Cu2+. The treatment of RFO present in soy milk with the enzymes showed that E1 α-galactosidase reduced the stachyose content to zero after 12 h of reaction, while E2 promoted total hydrolysis of raffinose. The complete removal of the oligosaccharides in soy milk could be reached by synergistic action of both enzymes