Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Imagem de Miniatura
    Item
    Expression of the sucrose binding protein from soybean: renaturation and stability of the recombinant protein
    (Phytochemistry, 2007-01-12) Rocha, Carolina S.; Luz, Dirce F.; Oliveira, Marli L.; Baracat-Pereira, Maria C.; Medrano, Francisco Javier; Fontes, Elizabeth P.B.
    The sucrose binding protein (SBP) belongs to the cupin family of proteins and is structurally related to vicilin-like storage proteins. In this investigation, a SBP isoform (GmSBP2/S64) was expressed in E. coli and large amounts of the protein accumulated in the insoluble fraction as inclusion bodies. The renatured protein was studied by circular dichroism (CD), intrinsic fluorescence, and binding of the hydrophobic probes ANS and Bis-ANS. The estimated content of secondary structure of the renatured protein was consistent with that obtained by theoretical modeling with a large predominance of b-strand structure (42%) over the a-helix (9.9%). The fluorescence emis- sion maximum of 303 nm for SBP2 indicated that the fluorescent tryptophan was completely buried within a highly hydrophobic environment. We also measured the equilibrium dissociation constant (K d ) of sucrose binding by fluorescence titration using the refolded protein. The low sucrose binding affinity (K d = 2.79 ± 0.22 mM) of the renatured protein was similar to that of the native protein purified from soybean seeds. Collectively, these results indicate that the folded structure of the renatured protein was similar to the native SBP protein. As a member of the bicupin family of proteins, which includes highly stable seed storage proteins, SBP2 was fairly stable at high temperatures. Likewise, it remained folded to a similar extent in the presence or absence of 7.6 M urea or 6.7 M GdmHCl. The high stability of the renatured protein may be a reminiscent property of SBP from its evolutionary relatedness to the seed storage proteins.
  • Imagem de Miniatura
    Item
    Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus tomato chlorotic mottle virus
    (Virus Research, 2007-03-26) Fontenelle, Mariana R.; Luz, Dirce F.; Gomes, Ana Paula S.; Florentino, Lilian H.; Zerbini, Francisco M.; Fontes, Elizabeth P.B.
    All geminiviruses found in Brazil belong to the Begomovirus genus with a bipartite genome that is split between two genomic components, DNA-A and DNA-B. The DNA-A of the bipartite begomovirus ToCMoV-[MG-Bt] (Tomato chlorotic mottle virus), however, possesses as a peculiar characteristic the capacity to systemically infect Nicotiana benthamiana. Here we further characterize this variant DNA-A and show that it also infects Solanum lycopersicum and other host plants, in the absence of DNA-B. The ToCMoV-[MG-Bt]-DNA-A encodes an additional ORF, designated AC5, but otherwise its genome organization is similar to other DNA-A from Western Hemisphere begomoviruses. We showed that this AC5 putative ORF is not essential for infection, as disruption of its coding capacity caused no effect on ToCMoV-[MG-Bt]-DNA-A-mediated infection process. Likewise, the ToCMoV-[MG-Bt]-DNA-A ac4 mutant was indistinguishable from its wild type counterpart in all hosts tested. In contrast, an av1 (coat protein) mutant was unable to infect systemically N. benthamiana and Chenopodium quinoa in the absence of DNA-B. However, inclusion of DNA-B in the infection assay fully rescued the movement defect of the ToCMoV-[MG-Bt]-DNA-A av1 mutant. These results suggest that at suboptimal conditions for infection the coat protein is required for ToCMoV-[MG-Bt] systemic movement.
  • Imagem de Miniatura
    Item
    Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein
    (Virology, 2004-09-26) Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anésia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.
    Despite extensive studies in plant virus – host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N- terminal portion. The potential significance of the NSP – NIK interaction is discussed.
  • Imagem de Miniatura
    Item
    The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling
    (Virology, 2008-08-02) Rocha, Carolina S.; Santos, Anésia A.; Machado, João Paulo B.; Fontes, Elizabeth P.B.
    The NIK (NSP-interacting kinase)-mediated antiviral signaling pathway was identified as a virulence target of the begomovirus nuclear shuttle protein (NSP). Here, we further characterized this layer of plant innate defense by identifying the ribosomal protein L10 (rpL10), a QM-like protein, as a downstream effector of the antiviral signaling. Although both ribosomal proteins rpL10 and rpL18 were found to associate with NIK1 through yeast two-hybrid screening, the NIK receptors specifically phosphorylated rpL10 in vitro. Furthermore, loss of rpL10 function significantly increased susceptibility to begomovirus infection, recapitulating the phenotype of nik knockout lines. Our results genetically linked rpL10 to the NIK-mediated antiviral signaling.
  • Imagem de Miniatura
    Item
    Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress
    (Journal of Experimental Botany, 2006-01-23) Rodrigues, Simone M.; Andrade, Maxuel O.; Gomes, Ana Paula Soares; DaMatta, Fabio M.; Baracat-Pereira, Maria C.; Fontes, Elizabeth P.B.
    Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H2O2- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H2O2, whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.