Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 18
  • Imagem de Miniatura
    Item
    Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family
    (Genetics and Molecular Biology, 2007) Fietto, Luciano G.; Costa, Maximiller D. L.; Cruz, Cosme D.; Souza, Alessandra A.; Machado, Marcos A.; Fontes, Elizabeth P. B.
    The completion of the genome sequencing of the Arabidopsis thaliana model system provided a powerful molecular tool for comparative analysis of gene families present in the genome of economically relevant plant species. In this investigation, we used the sequences of the Arabidopsis Hsp70 gene family to identify and annotate the Citrus Hsp70 genes represented in the CitEST database. Based on sequence comparison analysis, we identified 18 clusters that were further divided into 5 subgroups encoding four mitochondrial mtHsp70s, three plastid csHsp70s, one ER luminal Hsp70 BiP, two HSP110/SSE-related proteins and eight cytosolic Hsp/Hsc70s. We also analyzed the expression profile by digital Northern of each Hsp70 transcript in different organs and in response to stress conditions. The EST database revealed a distinct population distribution of Hsp70 ESTs among isoforms and across the organs surveyed. The Hsp70-5 isoform was highly expressed in seeds, whereas BiP, mitochondrial and plastid HSp70 mRNAs displayed a similar expression profile in the organs analyzed, and were predominantly represented in flowers. Distinct Hsp70 mRNAs were also differentially expressed during Xylella infection and Citrus tristeza viral infection as well as during water deficit. This in silico study sets the groundwork for future investigations to fully characterize functionally the Citrus Hsp70 family and underscores the relevance of Hsp70s in response to abiotic and biotic stresses in Citrus.
  • Imagem de Miniatura
    Item
    Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans
    (PNAS, 2019-01-02) Martins, Laura G. C.; Pimenta, Maiana R.; Duarte, Christiane E. M.; Fontes, Elizabeth P. B.; Melo, Janaina O.; Barros, Beatriz A.; Lana, Ubiraci G. P.; Pastina, Maria M.; Guimaraes, Claudia T.; Schaffer, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.
    Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE. Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans. Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.
  • Imagem de Miniatura
    Item
    A WW domain-containing protein forms immune nuclear bodies against begomoviruses
    (Molecular Plant, 2018-12-03) Calil, Iara P.; Quadros, Iana P. S.; Araújo, Thais C.; Duarte, Christiane E. M.; Gouveia-Mageste, Bianca C.; Silva, José Cleydson F.; Brustolini, Otávio J. B.; Teixeira, Ruan M.; Oliveira, Cauê N.; Milagres, Rafael W. M. M.; Martins, Gilberto S.; Reis, Pedro A. B.; Machado, Joao Paulo B.; Fontes, Elizabeth P. B.; Chory, Joanne
    The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP–DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.
  • Imagem de Miniatura
    Item
    Revisiting the soybean GmNAC superfamily
    (Frontiers in Plant Science, 2018-12) Melo, Bruno P.; Fraga, Otto T.; Silva, José Cleydson F.; Ferreira, Dalton O.; Brustolini, Otávio J. B.; Carpinetti, Paola A.; Machado, Joao Paulo B.; Reis, Pedro A. B.; Fontes, Elizabeth P. B.
    The NAC (NAM, ATAF, and CUC) genes encode transcription factors involved with the control of plant morph-physiology and stress responses. The release of the last soybean (Glycine max) genome assembly (Wm82.a2.v1) raised the possibility that new NAC genes would be present in the soybean genome. Here, we interrogated the last version of the soybean genome against a conserved NAC domain structure. Our analysis identified 32 putative novel NAC genes, updating the superfamily to 180 gene members. We also organized the genes in 15 phylogenetic subfamilies, which showed a perfect correlation among sequence conservation, expression profile, and function of orthologous Arabidopsis thaliana genes and NAC soybean genes. To validate our in silico analyses, we monitored the stress-mediated gene expression profiles of eight new NAC-genes by qRT-PCR and monitored the GmNAC senescence-associated genes by RNA-seq. Among ER stress, osmotic stress and salicylic acid treatment, all the novel tested GmNAC genes responded to at least one type of stress, displaying a complex expression profile under different kinetics and extension of the response. Furthermore, we showed that 40% of the GmNACs were differentially regulated by natural leaf senescence, including eight (8) newly identified GmNACs. The developmental and stress-responsive expression profiles of the novel NAC genes fitted perfectly with their phylogenetic subfamily. Finally, we examined two uncharacterized senescence-associated proteins, GmNAC065 and GmNAC085, and a novel, previously unidentified, NAC protein, GmNAC177, and showed that they are nuclear localized, and except for GmNAC065, they display transactivation activity in yeast. Consistent with a role in leaf senescence, transient expression of GmNAC065 and GmNAC085 induces the appearance of hallmarks of leaf senescence, including chlorophyll loss, leaf yellowing, lipid peroxidation and accumulation of H 2 O 2 . GmNAC177 was clustered to an uncharacterized subfamily but in close proximity to the TIP subfamily. Accordingly, it was rapidly induced by ER stress and by salicylic acid under late kinetic response and promoted cell death in planta. Collectively, our data further substantiated the notion that the GmNAC genes display functional and expression profiles consistent with their phylogenetic relatedness and established a complete framework of the soybean NAC superfamily as a foundation for future analyses.
  • Imagem de Miniatura
    Item
    Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response
    (Gene, 2009-09-01) Pinheiro, Guilherme L.; Marques, Carolina S.; Costa, Maximiller D.B.L.; Reis, Pedro A. B.; Alves, Murilo S.; Carvalho, Claudine M.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    We performed an inventory of soybean NAC transcription factors, in which 101 NAC domain-containing proteins were annotated into 15 different subgroups, showing a clear relationship between structure and function. The six previously described GmNAC proteins (GmNAC1 to GmNAC6) were located in the nucleus and a transactivation assay in yeast confirmed that GmNAC2, GmNAC3, GmNAC4 and GmNAC5 function as transactivators. We also analyzed the expression of the six NAC genes in response to a variety of stress conditions. GmNAC2, GmNAC3 and GmNAC4 were strongly induced by osmotic stress. GmNAC3 and GmNAC4 were also induced by ABA, JA and salinity but differed in their response to cold. Consistent with an involvement in cell death programs, the transient expression of GmNAC1, GmNAC5 and GmNAC6 in tobacco leaves resulted in cell death and enhanced expression of senescence markers. Our results indicate that the described soybean NACs are functionally non-redundant transcription factors involved in response to abiotic stresses and in cell death events in soybean.
  • Imagem de Miniatura
    Item
    NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism
    (Nature, 2015-04-30) Zorzatto, Cristiane; Machado, João Paulo B.; Lopes, Kênia V. G.; Nascimento, Kelly J. T.; Pereira, Welison A.; Brustolini, Otávio J. B.; Reis, Pedro A. B.; Calil, Iara P.; Deguchi, Michihito; Sachetto-Martins, Gilberto; Gouveia, Bianca C.; Loriato, Virgílio A. P.; Silva, Marcos A. C.; Silva, Fabyano F.; Santos, Anésia A.; Chory, Joanne; Fontes, Elizabeth P. B.
    Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security^ 1–3 . In virus– plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts^ 1 . In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections^ 2,3 . Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses^ 1,2 . Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP)^ 4–6 , leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.
  • Imagem de Miniatura
    Item
    NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?
    (Bioessays, 2015-09-03) Machado, Joao P. B.; Brustolini, Otavio J. B.; Mendes, Giselle C.; Santos, Anésia A.; Fontes, Elizabeth P. B.
    NIK1 is a receptor‐like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1‐mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down‐regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.
  • Imagem de Miniatura
    Item
    A PERK-Like receptor Kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection
    (Journal of Virology, 2006-04-09) Florentino, Lilian H.; Santos, Anésia A.; Fontenelle, Mariana R.; Pinheiro, Guilherme L.; Zerbini, Francisco M.; Baracat-Pereira, Maria C.; Fontes, Elizabeth P. B.
    The nuclear shuttle protein (NSP) from bipartite geminiviruses facilitates the intracellular transport of viral DNA from the nucleus to the cytoplasm and acts in concert with the movement protein (MP) to promote the cell-to-cell spread of the viral DNA. A proline-rich extensin-like receptor protein kinase (PERK) was found to interact specifically with NSP of Cabbage leaf curl virus (CaLCuV) and of tomato-infecting geminiviruses through a yeast two-hybrid screening. The PERK-like protein, which we designated NsAK (for NSP-associated kinase), is structurally organized into a proline-rich N-terminal domain, followed by a transmembrane segment and a C-terminal serine/threonine kinase domain. The viral protein interacted stably with defective versions of the NsAK kinase domain, but not with the potentially active enzyme, in an in vitro binding assay. In vitro-translated NsAK enhanced the phosphorylation level of NSP, indicating that NSP functions as a substrate for NsAK. These results demonstrate that NsAK is an authentic serine/threonine kinase and suggest a functional link for NSP-NsAK complex formation. This interpretation was corroborated by in vivo infectivity assays showing that loss of NsAK function reduces the efficiency of CaLCuV infection and attenuates symptom development. Our data implicate NsAK as a positive contributor to geminivirus infection and suggest it may regulate NSP function.
  • Imagem de Miniatura
    Item
    A New branch of endoplasmic reticulum stress signaling and the osmotic signal converge on Plant-specific Asparagine-rich proteins to promote cell death
    (The Journal of biological chemistry, 2008-05-19) Costa, Maximiller D. L.; Reis, Pedro A. B.; Valente, Maria Anete S.; Irsigler, André S. T.; Carvalho, Claudine M.; Loureiro, Marcelo E.; Aragão, Francisco J. L.; Boston, Rebecca S.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene gly- col treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activa- tion of the UPR by ER stress inducers, but did not affect activa- tion of NRPs. We also found that this integrated pathway trans- duces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senes- cence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmen- tation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde pro- duction, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytoki- nin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.
  • Imagem de Miniatura
    Item
    Soybean chlorotic spot virus, a novel begomovirus infecting soybean in Brazil
    (Archives of Virology, 2012-10-10) Coco, Daniela; Calil, Iara P.; Brustolini, Otavio J. B.; Santos, Anesia A.; Inoue-Nagata, Alice K.; Fontes, Elizabeth P. B.
    A novel soybean-infecting begomovirus from Brazil was identified in Jaíba, in the state of Minas Gerais, and molecularly characterized. By using rolling-circle amplification-based cloning of viral DNAs, three DNA-A variants and a cognate DNA-B were isolated from infected samples. The DNA variants share more than 98 % sequence identity but have less than 89 % identity to other reported begomovirus, the limit for demarcation of new species. In a phylogenetic analysis, both DNA-A and DNA-B clustered with other Brazilian begomoviruses. Infectious cloned DNA-A and DNA-B components induced distinct symptoms in Solanaceae and Fabaceae species by biolistic inoculation. In soybean, the virus induced mild symptoms, i.e., chlorotic spots on the leaves, from which the name soybean chlorotic spot virus (SoCSV) was proposed. The most severe symptoms were displayed by common beans, which exhibited leaf distortion, blistering, interveinal chlorosis, mosaic and golden mosaic. The possibility that SoCSV may become a threat to bean production in Brazil is discussed.