Artigos

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11847

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 10
  • Imagem de Miniatura
    Item
    Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family
    (Genetics and Molecular Biology, 2007) Fietto, Luciano G.; Costa, Maximiller D. L.; Cruz, Cosme D.; Souza, Alessandra A.; Machado, Marcos A.; Fontes, Elizabeth P. B.
    The completion of the genome sequencing of the Arabidopsis thaliana model system provided a powerful molecular tool for comparative analysis of gene families present in the genome of economically relevant plant species. In this investigation, we used the sequences of the Arabidopsis Hsp70 gene family to identify and annotate the Citrus Hsp70 genes represented in the CitEST database. Based on sequence comparison analysis, we identified 18 clusters that were further divided into 5 subgroups encoding four mitochondrial mtHsp70s, three plastid csHsp70s, one ER luminal Hsp70 BiP, two HSP110/SSE-related proteins and eight cytosolic Hsp/Hsc70s. We also analyzed the expression profile by digital Northern of each Hsp70 transcript in different organs and in response to stress conditions. The EST database revealed a distinct population distribution of Hsp70 ESTs among isoforms and across the organs surveyed. The Hsp70-5 isoform was highly expressed in seeds, whereas BiP, mitochondrial and plastid HSp70 mRNAs displayed a similar expression profile in the organs analyzed, and were predominantly represented in flowers. Distinct Hsp70 mRNAs were also differentially expressed during Xylella infection and Citrus tristeza viral infection as well as during water deficit. This in silico study sets the groundwork for future investigations to fully characterize functionally the Citrus Hsp70 family and underscores the relevance of Hsp70s in response to abiotic and biotic stresses in Citrus.
  • Imagem de Miniatura
    Item
    Genetic diversity of begomovirus infecting tomato and associated weeds in southeastern Brazil
    (Fitopatologia Brasileira, 2002-07) Ambrozevicius, Luciana P.; Calegario, Renata F.; Fontes, Elizabeth P. B.; Carvalho, Murilo G. de; Zerbini, F. Murilo
    The genetic diversity of begomovirus isolates from tomato (Lycopersicon esculentum) fields in the Southeastern region of Brazil was analyzed by direct sequencing of PCR fragments amplified by using universal oligonucleotides for the begomovirus DNA-A, and subsequent computer-aided phylogenetic analysis. Samples of tomato plants and associated weeds showing typical symptoms of virus infection were collected at seven locations in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. A total of 137 out of 369 samples were infected with a begomovirus based on PCR analysis. Phylogenetic analysis indicated a high degree of genetic diversity among begomoviruses infecting tomatoes in the sampled area. One species (Tomato chlorotic mottle virus, TCMV) occurs predominantly in Minas Gerais, whereas in Rio de Janeiro and Espírito Santo a distinct species, not yet fully characterized, predominates. Phylogenetic analysis further indicates the presence of an additional four possible new species. This high degree of genetic diversity suggests a recent transfer of indigenous begomovirus from wild hosts into tomatoes. The close phylogenetic relationship verified between begomovirus infecting tomato and associated weeds favors this hypothesis.
  • Imagem de Miniatura
    Item
    Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response
    (Gene, 2009-09-01) Pinheiro, Guilherme L.; Marques, Carolina S.; Costa, Maximiller D.B.L.; Reis, Pedro A. B.; Alves, Murilo S.; Carvalho, Claudine M.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    We performed an inventory of soybean NAC transcription factors, in which 101 NAC domain-containing proteins were annotated into 15 different subgroups, showing a clear relationship between structure and function. The six previously described GmNAC proteins (GmNAC1 to GmNAC6) were located in the nucleus and a transactivation assay in yeast confirmed that GmNAC2, GmNAC3, GmNAC4 and GmNAC5 function as transactivators. We also analyzed the expression of the six NAC genes in response to a variety of stress conditions. GmNAC2, GmNAC3 and GmNAC4 were strongly induced by osmotic stress. GmNAC3 and GmNAC4 were also induced by ABA, JA and salinity but differed in their response to cold. Consistent with an involvement in cell death programs, the transient expression of GmNAC1, GmNAC5 and GmNAC6 in tobacco leaves resulted in cell death and enhanced expression of senescence markers. Our results indicate that the described soybean NACs are functionally non-redundant transcription factors involved in response to abiotic stresses and in cell death events in soybean.
  • Imagem de Miniatura
    Item
    A PERK-Like receptor Kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection
    (Journal of Virology, 2006-04-09) Florentino, Lilian H.; Santos, Anésia A.; Fontenelle, Mariana R.; Pinheiro, Guilherme L.; Zerbini, Francisco M.; Baracat-Pereira, Maria C.; Fontes, Elizabeth P. B.
    The nuclear shuttle protein (NSP) from bipartite geminiviruses facilitates the intracellular transport of viral DNA from the nucleus to the cytoplasm and acts in concert with the movement protein (MP) to promote the cell-to-cell spread of the viral DNA. A proline-rich extensin-like receptor protein kinase (PERK) was found to interact specifically with NSP of Cabbage leaf curl virus (CaLCuV) and of tomato-infecting geminiviruses through a yeast two-hybrid screening. The PERK-like protein, which we designated NsAK (for NSP-associated kinase), is structurally organized into a proline-rich N-terminal domain, followed by a transmembrane segment and a C-terminal serine/threonine kinase domain. The viral protein interacted stably with defective versions of the NsAK kinase domain, but not with the potentially active enzyme, in an in vitro binding assay. In vitro-translated NsAK enhanced the phosphorylation level of NSP, indicating that NSP functions as a substrate for NsAK. These results demonstrate that NsAK is an authentic serine/threonine kinase and suggest a functional link for NSP-NsAK complex formation. This interpretation was corroborated by in vivo infectivity assays showing that loss of NsAK function reduces the efficiency of CaLCuV infection and attenuates symptom development. Our data implicate NsAK as a positive contributor to geminivirus infection and suggest it may regulate NSP function.
  • Imagem de Miniatura
    Item
    A New branch of endoplasmic reticulum stress signaling and the osmotic signal converge on Plant-specific Asparagine-rich proteins to promote cell death
    (The Journal of biological chemistry, 2008-05-19) Costa, Maximiller D. L.; Reis, Pedro A. B.; Valente, Maria Anete S.; Irsigler, André S. T.; Carvalho, Claudine M.; Loureiro, Marcelo E.; Aragão, Francisco J. L.; Boston, Rebecca S.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene gly- col treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activa- tion of the UPR by ER stress inducers, but did not affect activa- tion of NRPs. We also found that this integrated pathway trans- duces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senes- cence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmen- tation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde pro- duction, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytoki- nin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.
  • Imagem de Miniatura
    Item
    A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically
    (Journal of General Virology, 2003-03-01) Galvao, Rafaelo M.; Mariano, Andrea C.; Luz, Dirce F.; Alfenas, Poliane F.; Andrade, Eduardo C.; Zerbini, Francisco M.; Almeida, Marcia R.; Fontes, Elizabeth P. B.
    Species of the genus Begomovirus (family Geminiviridae) found in the western hemisphere typically have a bipartite genome that consists of two 26 kb DNA genomic components, DNA-A and DNA-B. We have identified and cloned genomic components of a new tomato-infecting begomovirus from Brazil, for which the name Tomato crinkle leaf yellows virus (TCrLYV) is proposed, and a DNA-A variant of Tomato chlorotic mottle virus (ToCMV-[MG-Bt1]). Sequence analysis revealed that TCrLYV was most closely related to ToCMV, although it was sufficiently divergent to be considered a distinct virus species. Furthermore, these closely related viruses induce distinguishable symptoms in tomato plants. With respect to ToCMV-[MG-Bt1] DNA-A, evidence is presented that suggests a recombinant origin. It possesses a hybrid genome on which the replication compatible module (AC1 and replication origin) was probably donated by ToCMV- [BA-Se1] and the remaining sequences appear to have originated from Tomato rugose mosaic virus (ToRMV). Despite the high degree of sequence conservation with its predecessors, ToCMV-[MG- Bt1] differs significantly in its biological properties. Although ToCMV-[MG-Bt1] DNA-A did not infect tomato plants, it systemically infected Nicotiana benthamiana, induced symptoms of mottling and accumulated viral DNA in the apical leaves in the absence of a cognate DNA-B. The modular rearrangement that resulted in ToCMV-[MG-Bt1] DNA-A may have provided this virus with a more aggressive nature. Our results further support the notion that interspecies recombination may play a significant role in geminivirus diversity and their emergence as agriculturally important pathogens.
  • Imagem de Miniatura
    Item
    The soybean sucrose binding protein gene family: genomic organization, gene copy number and tissue‐specific expression of the SBP2 promoter
    (Journal of Experimental Botany, 2003-12-01) Contim, Luis Antônio S.; Waclawovsky, Alessandro J.; Delú‐Filho, Nelson; Pirovani, Carlos P.; Clarindo, Wellington R.; Loureiro, Marcelo E.; Carvalho, Carlos R.; Fontes, Elizabeth P. B.
    The sucrose binding protein (SBP) from soybean has been implicated as an important component of the sucrose uptake system. Two SBP genomic clones, gsS641.1 and gsS641.2, which correspond to allelic forms of the GmSBP2/S64 gene, have been isolated and characterized. As a member of the seed storage protein superfamily, it has been shown that the SBP gene structure is similar to vicilin genes with intron/exon boundaries at conserved positions. Fluores cence in situ hybridization (FISH) suggested that the soybean SBP gene family is represented by at least two non‐allelic genes corresponding to the previously isolated GmSBP1 and GmSBP2/S64 cDNAs. These two cDNAs share extensive sequence similarity but are located at different loci in the soybean genome. To investigate transcriptional activation of the GmSBP2 gene, 2 kb 5′‐flanking sequences of gsS641.1 and gsS641.2 were fused to the β‐glucuronidase (GUS) reporter gene and to the green fluorescent protein (GFP) reporter gene and inde pendently introduced into Nicotiana tabacum by Agrobacterium tumefaciens‐mediated transformation. The SBP2 promoter directed expression of both GUS and GFP reporter genes with high specificity to the phloem of leaves, stems and roots. Thus, the overall pattern of SBP–GUS or SBP–GFP expression is consistent with the involvement of SBP in sucrose translocation‐dependent physiological processes.
  • Imagem de Miniatura
    Item
    The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco
    (Journal of Experimental Botany, 2008-12-03) Valente, Maria Anete S.; Faria, Jerusa A. Q. A.; Soares-Ramos, Juliana R. L.; Reis, Pedro A. B.; Pinheiro, Guilherme L.; Piovesan, Newton D.; Morais, Angélica T.; Menezes, Carlos C.; Cano, Marco A. O.; Fietto, Luciano G.; Loureiro, Marcelo E.; Aragão, Francisco J. L.; Fontes, Elizabeth P. B.
    The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to drought.
  • Imagem de Miniatura
    Item
    Conserved threonine residues within the A-Loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling
    (Plos One, 2009-06-03) Santos, Anésia A.; Carvalho, Claudine M.; Florentino, Lilian H.; Ramos, Humberto J. O.; Fontes, Elizabeth P. B.
    NSP-interacting kinase (NIK1) is a receptor-like kinase identified as a virulence target of the begomovirus nuclear shuttle protein (NSP). We found that NIK1 undergoes a stepwise pattern of phosphorylation within its activation-loop domain (A- loop) with distinct roles for different threonine residues. Mutations at Thr-474 or Thr-468 impaired autophosphorylation and were defective for kinase activation. In contrast, a mutation at Thr-469 did not impact autophosphorylation and increased substrate phosphorylation, suggesting an inhibitory role for Thr-469 in kinase function. To dissect the functional significance of these results, we used NSP-expressing virus infection as a mechanism to interfere with wild type and mutant NIK1 action in plants. The NIK1 knockout mutant shows enhanced susceptibility to virus infections, a phenotype that could be complemented with ectopic expression of a 35S-NIK1 or 35S-T469A NIK1 transgenes. However, ectopic expression of an inactive kinase or the 35S-T474A NIK1 mutant did not reverse the enhanced susceptibility phenotype of knockout lines, demonstrating that Thr-474 autophosphorylation was needed to transduce a defense response to geminiviruses. Furthermore, mutations at Thr-474 and Thr-469 residues antagonistically affected NIK-mediated nuclear relocation of the downstream effector rpL10. These results establish that NIK1 functions as an authentic defense receptor as it requires activation to elicit a defense response. Our data also suggest a model whereby phosphorylation-dependent activation of a plant receptor-like kinase enables the A-loop to control differentially auto- and substrate phosphorylation.
  • Imagem de Miniatura
    Item
    Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus
    (Public Library of Science Pathogens, 2008-12-26) Carvalho, Claudine M.; Santos, Anésia A.; Pires, Silvana R.; Rocha, Carolina S.; Saraiva, Daniela I.; Machado, João Paulo B.; Mattos, Eliciane C.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    The NSP-interacting kinase (NIK) receptor-mediated defense pathway has been identified recently as a virulence target of the geminivirus nuclear shuttle protein (NSP). However, the NIK1–NSP interaction does not fit into the elicitor–receptor model of resistance, and hence the molecular mechanism that links this antiviral response to receptor activation remains obscure. Here, we identified a ribosomal protein, rpL10A, as a specific partner and substrate of NIK1 that functions as an immediate downstream effector of NIK1-mediated response. Phosphorylation of cytosolic rpL10A by NIK1 redirects the protein to the nucleus where it may act to modulate viral infection. While ectopic expression of normal NIK1 or a hyperactive NIK1 mutant promotes the accumulation of phosphorylated rpL10A within the nuclei, an inactive NIK1 mutant fails to redirect the protein to the nuclei of co-transfected cells. Likewise, a mutant rpL10A defective for NIK1 phosphorylation is not redirected to the nucleus. Furthermore, loss of rpL10A function enhances susceptibility to geminivirus infection, resembling the phenotype of nik1 null alleles. We also provide evidence that geminivirus infection directly interferes with NIK1-mediated nuclear relocalization of rpL10A as a counterdefensive measure. However, the NIK1-mediated defense signaling neither activates RNA silencing nor promotes a hypersensitive response but inhibits plant growth and development. Although the virulence function of the particular geminivirus NSP studied here overcomes this layer of defense in Arabidopsis, the NIK1 mediated signaling response may be involved in restricting the host range of other viruses.