Veterinária

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11842

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 13
  • Imagem de Miniatura
    Item
    Evaluation of the microbiological safety and sensory quality of a sliced cured-smoked pork product with protective cultures addition and modified atmosphere packaging
    (Food Science and Technology International, 2019) Todorov, Svetoslav; Casquete, Rocı́o; Fonseca, Susana C.; Pinto, Ricardo; Castro, Sónia M.; Teixeira, Paula; Vaz-Velho, Manuela
    The aim of this study was to evaluate the effect of two protective lactic acid bacteria cultures combined with modified atmosphere packaging on the survival/growth of Listeria innocua 2030c (as a surrogate for Listeria monocytogenes) and on sensory attributes of ready-to-eat ‘lombo’ over storage time. Sliced ‘lombo’, a trad- itional cured-smoked pork loin, was inoculated with L. innocua 2030c, Lactobacillus sakei ST153 (isolated from ‘salpicão’) and BLC35 culture (with Lactobacillus curvatus, Staphylococcus xylosus and Pediococcus acidilactici; CHR Hansen) as protective cultures. Samples were packed in two modified atmosphere packa- ging conditions (20% CO 2 /80% N 2 and 40% CO 2 /60% N 2 ) and stored at 5 C for 124 days. Both cultures led to a reduction of 1–2 log CFU/g of L. innocua 2030c after 12 h; however, at the end of storage only Lb. sakei ST153 maintained this antilisterial effect, which was more evident at 40% CO 2 /60% N 2 . The influence of cultures addition and modified atmosphere packaging conditions on the sensory characteristics of the prod- uct were not significant. Thus, Lb. sakei ST153 combined with modified atmosphere packaging is a strong candidate to be used in a biopreservation strategy maintaining the traditional sensory quality of cured- smoked pork products and increasing their safety with respect to Listeria spp.
  • Imagem de Miniatura
    Item
    Potential Control of Listeria monocytogenes by Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC Strains Isolated From Artisanal Cheese
    (Probiotics and Antimicrobial Proteins, 2019-03) Cavicchioli, Valéria Quintana; Camargo, Anderson Carlos; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto
    Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains, previously isolated from artisanal cheese, were evaluated for their safety with the aim to determine whether they could be used as beneficial strains, especially in the control of Listeria monocytogenes. Both isolates survived simulated gastrointestinal conditions and showed high levels of auto- and co-aggregation with L. monocytogenes, although the hydrophobicity of cells varied. Using the agar-spot test with 33 commercial drugs from different groups, only anti-inflammatory drugs and drugs containing loratadine and propranolol hydrochloride were able to affect the growth of the tested strains. Both strains were resistant to 3 out of 11 antibiotics tested by the disc diffusion method, and low frequencies of antibiotic resistance-encoding genes were observed by PCR analysis. Tested strains neither presented biogenic amine-related genes nor produced these substances. Aside from some antibiotic resistance characteristics, the tested strains were considered safe as they lack other virulence-related genes. E. hirae ST57ACC and P. pentosaceus ST65ACC both presented beneficial properties, particularly their ability to survive gastrointestinal conditions and to aggregate with L. monocytogenes, which can facilitate the elimination of this pathogen. Further studies should be conducted to better understand these interactions.
  • Imagem de Miniatura
    Item
    Enhanced bacteriocin production by Pediococcus pentosaceus 147 in co-culture with Lactobacillus plantarum LE27 on Cheese Whey Broth
    (Frontiers in Microbiology, 2018-12) Nero, Luis Augusto; Gutiérrez-Cortés, Carolina; Suarez, Héctor; Buitrago, Gustavo; Todorov, Svetoslav Dimitrov
    The production of bacteriocins by lactic acid bacteria (LAB) has been of wide interest in the food industry due to their potential application in biopreservation. The production of bacteriocins is usually low in single strain fermentation, but can improve when the bacteriocinogenic strain is cultured in association with another bacteria. The present work aims to evaluate the growth and production of bacteriocins by Pediococcus pentosaceus 147 (bacteriocinogenic strain) in co-culture with Lactobacillus plantarum LE27 (inducer strain) using a culture medium based on cheese whey (CW). Strains were inoculated in co-culture in a CW broth at 7.24 Log CFU/mL of initial concentration of P. pentosaceus 147 and incubated at 37◦ C. Bacteriocin production was measured after 24 h by the critical dilution method, biomass was measured by plating on MRS agar (1% aniline blue), and a mono-culture was used as a control. The titers of bacteriocins produced by P. pentosaceus 147 in mono-culture were 19,200 AU/mL lower than those obtained in co-culture with Lb. plantarum LE27 at 51,200 AU/mL. The effect of adding the inducer strain at different times of incubation (3, 6, 9, and 12 h) was evaluated, with the addition of the induction factor at the beginning of the incubation of P. pentosaceus 147 generating the highest bacteriocin activity. This study shows the potential of inducing bacteriocinogenesis using co-cultures of strains of the genera Pediococcus and Lactobacillus and using alternative substrates such as cheese whey.
  • Imagem de Miniatura
    Item
    Lactic acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools to control Listeria monocytogenes biofilms in food processing facilities
    (Molecular Biotechnology, 2018-09) Camargo, Anderson C.; Todorov, Svetoslav D.; Chihib, N. E.; Drider, D.; Nero, Luís A.
    Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are “friendly” antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
  • Imagem de Miniatura
    Item
    Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential
    (LWT - Food Science and Technology, 2010-11) Moraes, Paula Mendonça; Perin, Luana Martins Perin; Ortolani, Maria Beatriz Tassinari; Yamazi, Anderson Keizo; Viçosa, Gabriela Nogueira; Nero, Luís Augusto
    The objective of this study was to evaluate culture media and methodologies for isolation and detection of lactic acid bacteria (LAB) capable to produce bacteriocin-like substances. Samples of milk and cheese were pour plated on de Mann-Rogosa-Sharpe agar (MRS) and Kang-Fung-Sol agar (KFS) (both at 35 °C/48 h, under anaerobiosis), from which 389 and 256 LAB cultures were selected. The antagonistic activity of them was evaluated using the spot-on-the-lawn and two culture media: brain-heart infusion agar with catalase (BHI + C) and M17 (both at 35 °C/24 h). The proteinaceous nature of the antagonistic cultures was verified using: spot-on-the-lawn (MRS, 25 °C/24 h, under anaerobiosis) and well-diffusion (cultures amplified on modified MRS broth at 25 °C/24 h, and then neutralized using NaOH). Listeria monocytogenes ATCC 7644 was used as indicator. A larger number of antagonist cultures were isolated from MRS (83 by M17 and 65 by BHI + C) in comparison to KFS (24 by M17 and 15 by BHI + C). The spot-on-the-lawn identified a higher frequency of LAB capable of producing bacteriocin-like substances. MRS was considered to be the best culture media for the isolation of LAB capable to produce bacteriocin-like substances, activity that was better identified using the spot-on-the-lawn methodology.
  • Imagem de Miniatura
    Item
    Characterization of a novel bacteriocin produced by Lactobacillus plantarum ST8SH and some aspects of its mode of action
    (Annals of Microbiology, 2015-11-17) Todorov, Svetoslav Dimitrov; Holzapfel, Wilhelm; Nero, Luis Augusto
    Bacteriocins produced by lactic acid bacteria (LAB) are ribosomally synthesized antimicrobial peptides, with a diverse mode of bactericidal activity. This study focused on characterization of the bactericidal activity of bacteriocin ST8SH, with special attention to control of Listeria and Enteroccus species. Lactobacillus plantarum ST8SH produces a bacteriocin of the pediocin PA-1 family (sharing 96 % similarity on genetic level) with activity against several LAB, Enterococcus spp., Klebsiella pneumoniae, Listeria spp., Streptococcus spp. and some other human and foodborne pathogens. Addition of bacteriocin ST8SH to exponential or stationary phase cultures of L. monocytogenes ScottA and E. faecalis ATCC 19433 inhibited growth for 12 h. The effects of bacteriocin ST8SH on L. monocytogenes ScottA and E. faecalis ATCC 19433 were recorded indirectly based on enzyme, protein and nucleotide material leakage. Considering the antimicrobial activity of bacteriocin ST8SH against the tested microorganisms, and the physiological characteristics of Lb. plantarum ST8SH, either the bacteriocin or the strain may be used as tools for biopreservation.
  • Imagem de Miniatura
    Item
    Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk
    (International Journal of Food Microbiology, 2014-06-12) Perin, Luana Martins; Miranda, Rodrigo Otávio; Todorov, Svetoslav Dimitrov; Franco, Bernadette Dora Gombossy de Melo; Nero, Luís Augusto
    The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems.
  • Imagem de Miniatura
    Item
    Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk
    (Applied Biochemistry and Biotechnology, 2015-01-31) Cavicchioli, Valéria Quintana; Dornellas, Wesley dos Santos; Perin, Luana Martins; Pieri, Fábio Alessandro; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto
    Lactic acid bacteria (LAB, n = 57) were previously obtained from raw goat milk, identified as Lactococcus spp. (n = 24) and Enterococcus spp. (n = 33), and characterized as bacteriocinogenic. Fingerprinting by pulsed field gel electrophoresis (PFGE) demonstrated high genetic diversity, and 30 strains were selected and exhibited strong antimicrobial activity against 46 target strains (LAB, spoilage, and foodborne pathogens). Six strains (Lactococcus lactis: GLc03 and GLc05; and Enterococcus durans: GEn09, GEn12, GEn14, and GEn17) were selected to characterize their bacteriocinogenic features, using Listeria monocytogenes ATCC 7644 as the target. The six strains produced bacteriocins at higher titer when incubated in MRS at 37 °C up to 12 h, when compared to growth at 25 and 30 °C. The produced bacteriocins kept their antimicrobial activity after exposure to 100 °C for 2 h and 121 °C for 20 min; the antimicrobial activity was also observed after treatment at pH 2.0 to 10.0, except for GLc03. L. monocytogenes populations were reduced approximately two logs after treatment with cell-free supernatants from the selected strains. These data show that goat milk can contain a diverse microbiota able to inhibit L. monocytogenes, a common pathogen found in dairy products, and can be potentially employed in biopreservation of food produced under different processing conditions.
  • Imagem de Miniatura
    Item
    Inhibition of herpes simplex virus 1 (HSV-1) and poliovirus (PV-1) by bacteriocins from lactococcus lactis subsp. lactis and enterococcus durans strains isolated from goat milk
    (International Journal of Antimicrobial Agents, 2017-04-05) Cavicchioli, Valéria Quintana; Carvalho, Otávio Valério de; Paiva, Janine Cerqueira de; Todorov, Svetoslav Dimitrov; Silva Júnior, Abelardo; Nero, Luís Augusto
    Bacteriocins have unusual inhibitory activity, including antiviral properties, and this can be exploited to give alternative applications. Semi–purified bacteriocins of six lactic acid bacteria (LAB) strains isolated from goat milk (two Lactococcus lactis: GLc03 and GLc05, and four Enterococcus durans: GEn09, GEn12, GEn14 and GEn17) were tested for cytotoxicity in Vero cells (50% Cytotoxicity Concentration: CC50), and for their antiviral activities against herpes simplex virus 1 (HVS-1) and poliovirus (PV-1). Semi-purified bacteriocins presented low cytotoxicity, with CC50 varying from 256.2 µg/mL (GLc05) to 1084.5 µg/mL (GEn14). CC10 was determined for all isolates (GLc03: 36.9 µg/mL; GLc05: 51.2 µg/mL; GEn09: 88.1 µg/mL; GEn12: 99.9 µg/mL; GEn14: 275 µg/mL; and GEn17: 62.2 µg/mL) and considered for antiviral activity assays. Antiviral activity before virus adsorption was recorded against PV-1 for GLc05 (4.9%), GEn09 (3.4%), GEn12 (24.7%) and GEn17 (23.5%), and against HSV-1 for GEn12 (27.9%), GEn14 (58.7%) and GEn17 (39.2%). Antiviral activity after virus adsorption was identified against PV-1 for GLc05 (32.7%), GEn09 (91.0%), GEn12 (93.7%) and GEn17 (57.2%), and against HSV-1 for GEn17 (71.6%). The results obtained indicate the potential of some bacteriocins, particularly those produced by E. durans strains investigated in the present study, in viral inhibition and their application as new antiviral agents.
  • Imagem de Miniatura
    Item
    Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese
    (Journal of Applied Microbiology, 2012-05-09) Moraes, P.M.; Perin, L.M.; Todorov, S.D.; Silva Jr, A.; Franco, B.D.G.M.; Nero, L.A.
    To provide molecular and phenotypical characterization of Enterococcus isolates obtained from raw milk and cheese, regarding their bacteriocinogenic and virulence activity. Forty-three bacteriocinogenic enterococci isolates were identified by 16s rDNA, fingerprinted by RAPD-PCR analysis and tested by PCR for the presence of genes for lantibiotics (lanM, lanB and lanC) and enterocins (entA, entB, entP, entL50AB and entAS48) and by phenotypical methods for bacteriocin production and inhibitory spectrum. Also, the virulence of the isolates was evaluated by PCR for genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc and by phenotypical tests for gelatinase, lipase, DNAse and α- and β-haemolysis. Most isolates (93·0%) harboured at least one lantibiotic or enterocin gene and were positive for several tested virulence genes, mainly asa1 (100%), gelE (93·0%) and efaA (83·7%). 53·5% of the isolates presented β-haemolysis. Enterococcus spp. isolates presented an interesting potential application for food preservation because of bacteriocin production; however, virulence-related genes were identified in all RAPD profiles. The study demonstrated the contradictory characteristics of the tested Enterococcus isolates: they presented a good potential for application in food biopreservation but contained several virulence factors.