Veterinária

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11842

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 12
  • Imagem de Miniatura
    Item
    Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes
    (BMC Microbiology, 2019) Castilho, Nathália Parma Augusto; Colombo, Monique; Oliveira, Leandro Licursi de; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto
    Bacteriocins produced by lactic acid bacteria (LAB) can be considered as viable alternatives for food safety and quality, once these peptides present antimicrobial activity against foodborne pathogens and spoilage bacteria. Fermented foods, such as artisanal sausages and cured meats, are relevant sources of LAB strains capable of producing novel bacteriocins, with particular interest by the food industry.Three LAB strains (firstly named as Lactobacillus curvatus 12, L. curvatus 36 and Weissella viridescens 23) were obtained from calabresa by presenting promising bacteriocinogenic activity, distinct genetic profiles (rep-PCR, RAPD, bacteriocin-related genes) and wide inhibitory spectrum. Among these strains, L. curvatus 12 presented higher bacteriocin production, reaching 25,000 AU/mL after incubation at 25, 30 and 37 °C and 6, 9 and 12 h. Partially purified bacteriocins from L. curvatus 12 kept their inhibitory activity after elution with isopropanol at 60% (v/v). Bacteriocins produced by this strain were purified by HPLC and sequenced, resulting in four peptides with 3102.79, 2631.40, 1967.06 and 2588.31 Da, without homology to known bacteriocins.LAB isolates obtained from calabresa presented high inhibitory activity. Among these isolates, bacteriocins produced by L. curvatus 12, now named as L. curvatus UFV-NPAC1, presented the highest inhibitory performance and the purification procedures revealed four peptides with sequences not described for bacteriocins to date.
  • Imagem de Miniatura
    Item
    Beneficial properties of lactic acid bacteria naturally present in dairy production
    (BMC Microbiology, 2018-12) Colombo, Monique; Castilho, Nathália P. A.; Todorov, Svetoslav D.; Nero, Luís Augusto
    Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics.Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose.The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties.
  • Imagem de Miniatura
    Item
    Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential
    (LWT - Food Science and Technology, 2010-11) Moraes, Paula Mendonça; Perin, Luana Martins Perin; Ortolani, Maria Beatriz Tassinari; Yamazi, Anderson Keizo; Viçosa, Gabriela Nogueira; Nero, Luís Augusto
    The objective of this study was to evaluate culture media and methodologies for isolation and detection of lactic acid bacteria (LAB) capable to produce bacteriocin-like substances. Samples of milk and cheese were pour plated on de Mann-Rogosa-Sharpe agar (MRS) and Kang-Fung-Sol agar (KFS) (both at 35 °C/48 h, under anaerobiosis), from which 389 and 256 LAB cultures were selected. The antagonistic activity of them was evaluated using the spot-on-the-lawn and two culture media: brain-heart infusion agar with catalase (BHI + C) and M17 (both at 35 °C/24 h). The proteinaceous nature of the antagonistic cultures was verified using: spot-on-the-lawn (MRS, 25 °C/24 h, under anaerobiosis) and well-diffusion (cultures amplified on modified MRS broth at 25 °C/24 h, and then neutralized using NaOH). Listeria monocytogenes ATCC 7644 was used as indicator. A larger number of antagonist cultures were isolated from MRS (83 by M17 and 65 by BHI + C) in comparison to KFS (24 by M17 and 15 by BHI + C). The spot-on-the-lawn identified a higher frequency of LAB capable of producing bacteriocin-like substances. MRS was considered to be the best culture media for the isolation of LAB capable to produce bacteriocin-like substances, activity that was better identified using the spot-on-the-lawn methodology.
  • Imagem de Miniatura
    Item
    Functional properties of Lactobacillus mucosae strains isolated from brazilian goat milk
    (Probiotics and Antimicrobial Proteins, 2016-12-10) Nero, Luís Augusto; Moraes, Georgia Maciel Dias de; Abreu, Louricélia Rodrigues de; Egito, Antônio Silvio do; Salles, Hévila Oliveira; Silva, Liana Maria Ferreira da; Todorov, Svetoslav Dimitrov; Santos, Karina Maria Olbrich dos
    The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.
  • Imagem de Miniatura
    Item
    Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk
    (International Journal of Food Microbiology, 2014-06-12) Perin, Luana Martins; Miranda, Rodrigo Otávio; Todorov, Svetoslav Dimitrov; Franco, Bernadette Dora Gombossy de Melo; Nero, Luís Augusto
    The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems.
  • Imagem de Miniatura
    Item
    Functional properties of Lactobacillus mucosa e strains isolated from brazilian goat milk
    (Probiotics and Antimicrobial Proteins, 2016-12-10) Nero, Luís Augusto; Todorov, Svetoslav Dimitrov; Moraes, Georgia Maciel Dias de; Abreu, Louricélia Rodrigues de; Egito, Antônio Silvio do; Salle, Hévila Oliveira; Silva, Liana Maria Ferreira da; Santos, Karina Maria Olbrich dos
    The search for probiotic candidates among lactic acid bacteria (LAB) isolated from food may uncover new strains with promising health and technological properties. Lactobacillus mucosae strains attracted recent research attention due to their ability to adhere to intestinal mucus and to inhibit pathogens in the gastrointestinal tract, both related to a probiotic potential. Properties of interest and safety aspects of three Lb. mucosae strains (CNPC006, CNPC007, and CNPC009) isolated from goat milk were investigated employing in vitro tests. The presence of genetic factors related to bile salt hydrolase production (bsh), intestinal adhesion properties (msa, map, mub, and ef-tu), virulence, and biogenic amine production were also verified. All strains exhibited the target map, mub, and ef-tu sequences; the msa gene was detected in CNPC006 and CNPC007 strains. Some of the searched sequences for virulence factors were detected, especially in the CNPC009 strain; all strains carried the hyl gene, related to the production of hyaluronidase. Lb. mucosae CNPC007 exhibited a high survival rate in simulated gastric and enteric conditions. Besides, all strains exhibited the bsh sequence, and CNPC006 and CNPC007 were able to deconjugate salts of glycodeoxycholic acid (GDC). Regarding technological properties for dairy product applications, a relatively higher milk acidification and clotting capacity, diacetyl production, and proteolytic activity were registered for CNPC007 in comparison to the other strains. Collectively, the results aim at Lb. mucosae CNPC007 as a promising probiotic candidate for application in dairy products, deserving further studies to confirm and explore its potential.
  • Imagem de Miniatura
    Item
    Bacterial ecology of artisanal Minas cheeses assessed by culture-dependent and -independent methods
    (Food Microbiology, 2017-02-12) Nero, Luís Augusto; Perin, Luana Martins; Sardaro, Maria Luisa Savo; Neviani, Erasmo; Gatti, Monica
    Artisanal Minas cheese is produced in Minas Gerais state, Brazil and its varieties are named according to their geographical origin (Serro, Canastra, Serra do Salitre, Araxá and Campo das Vertentes). The cheese is produced with raw cow's milk and the whey from the previous cheese production (“pingo”). The high economic and cultural importance of artisanal cheese in Brazil justifies the efforts to ensure its safety, quality and provenance. This study aimed to characterize the microbial diversity composition, and geographical distribution of artisanal Minas cheese, focusing on the characterization of its autochthonous lactic acid bacteria (LAB) microbiota. Artisanal Minas cheese varieties from Serro, Canastra, Serra do Salitre, Araxá and Campo das Vertentes were analyzed by culture-dependent (culturing and LAB sequencing) and -independent (repetitive extragenic palindromic-PCR (rep-PCR) and length heterogeneity-PCR, LH-PCR) methods to characterize the microbiota. The microbial counts were variable between cheese samples, and some samples presented high number of coagulase positive bacteria and coliforms that may be associated with hygienic issues. In all samples was observed a prevalence of LAB. 16S rRNA sequencing and rep-PCR of the LAB strains identified four genus (Lactobacillus, Lactococcus, Enterococcus and Weissella), ten species and more than one strain per species. Lactobacillus was the most prevalent genera in all the cheeses. LH-PCR revealed a further six genera and ten species that were not identified by culturing, highlighting the importance of combining both culture-dependent and -independent methods to fully characterize microbiota diversity. Principal component analysis of the LH-PCR data and cluster analysis of rep-PCR data revealed that the artisanal Minas cheese microbiota was influenced not only by their geographical origin but also by the cheese farm. The lack of standardization in the milking and cheese manufacturing procedures between artisanal cheese farms could explain the microbial diversity.
  • Imagem de Miniatura
    Item
    Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk
    (Applied Biochemistry and Biotechnology, 2015-01-31) Cavicchioli, Valéria Quintana; Dornellas, Wesley dos Santos; Perin, Luana Martins; Pieri, Fábio Alessandro; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto
    Lactic acid bacteria (LAB, n = 57) were previously obtained from raw goat milk, identified as Lactococcus spp. (n = 24) and Enterococcus spp. (n = 33), and characterized as bacteriocinogenic. Fingerprinting by pulsed field gel electrophoresis (PFGE) demonstrated high genetic diversity, and 30 strains were selected and exhibited strong antimicrobial activity against 46 target strains (LAB, spoilage, and foodborne pathogens). Six strains (Lactococcus lactis: GLc03 and GLc05; and Enterococcus durans: GEn09, GEn12, GEn14, and GEn17) were selected to characterize their bacteriocinogenic features, using Listeria monocytogenes ATCC 7644 as the target. The six strains produced bacteriocins at higher titer when incubated in MRS at 37 °C up to 12 h, when compared to growth at 25 and 30 °C. The produced bacteriocins kept their antimicrobial activity after exposure to 100 °C for 2 h and 121 °C for 20 min; the antimicrobial activity was also observed after treatment at pH 2.0 to 10.0, except for GLc03. L. monocytogenes populations were reduced approximately two logs after treatment with cell-free supernatants from the selected strains. These data show that goat milk can contain a diverse microbiota able to inhibit L. monocytogenes, a common pathogen found in dairy products, and can be potentially employed in biopreservation of food produced under different processing conditions.
  • Imagem de Miniatura
    Item
    In Vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation
    (Applied Biochemistry and Biotechnology, 2015-12-10) Camargo, Anderson Carlos; Paula, Otávio Almeida Lino de; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto
    The present study aimed to assess the activity of cell-free supernatant (CFS) containing bacteriocins on the formation and maintenance of biofilms developed by Listeria monocytogenes, and the associated effect of bacteriocins and ethylene-diamine-tetra-acetic acid (EDTA) on the formed biofilm. CFS from 9 lactic acid bacteria (LAB) strains was tested for inhibitory activity against 85 L. monocytogenes isolates and 21 LAB strains. Then, 12 L. monocytogenes strains were selected based on genetic profiles and sensitivity to CFS and were subjected to an in vitro assay to assess biofilm formation in microtiter plates, considering different culture media and incubation conditions. Based on these results, 6 L. monocytogenes strains were subjected to the same in vitro procedure to assess biofilm formation, being co-inoculated with CFS. In addition, these strains were subjected to the same in vitro procedure, modified by adding the CFS after biofilm formation. Relevant decrease in biofilm formation was observed in the first experiment, but CFS added after biofilm formation did not eliminate them. CFS from Lactobacillus curvatus ET31 were selected due to its anti-biofilm activity, being associated to EDTA at different concentrations and tested for biofilm control of three strains of L. monocytogenes, using the same in vitro procedure described previously. Concentrated bacteriocin presented poor performance in eliminating formed biofilms, and EDTA concentration presented no evident interference on biofilm elimination. Twelve selected L. monocytogenes strains were positive for investigated virulence makers and negative for luxS gene, recognized as being involved in biofilm formation. Selected L. monocytogenes strains were able to produce biofilms under different conditions. CFSs have the potential to prevent biofilm formation, but they were not able to destroy already formed biofilms. Nevertheless, low concentrations of CFS combined with EDTA caused a relevant reduction in already formed biofilms, but this association was not able to eliminate them. The activity of selected CFS was demonstrated against L. monocytogenes-formed biofilms, being more effective when associated to EDTA at different concentrations.
  • Imagem de Miniatura
    Item
    Inhibition of herpes simplex virus 1 (HSV-1) and poliovirus (PV-1) by bacteriocins from lactococcus lactis subsp. lactis and enterococcus durans strains isolated from goat milk
    (International Journal of Antimicrobial Agents, 2017-04-05) Cavicchioli, Valéria Quintana; Carvalho, Otávio Valério de; Paiva, Janine Cerqueira de; Todorov, Svetoslav Dimitrov; Silva Júnior, Abelardo; Nero, Luís Augusto
    Bacteriocins have unusual inhibitory activity, including antiviral properties, and this can be exploited to give alternative applications. Semi–purified bacteriocins of six lactic acid bacteria (LAB) strains isolated from goat milk (two Lactococcus lactis: GLc03 and GLc05, and four Enterococcus durans: GEn09, GEn12, GEn14 and GEn17) were tested for cytotoxicity in Vero cells (50% Cytotoxicity Concentration: CC50), and for their antiviral activities against herpes simplex virus 1 (HVS-1) and poliovirus (PV-1). Semi-purified bacteriocins presented low cytotoxicity, with CC50 varying from 256.2 µg/mL (GLc05) to 1084.5 µg/mL (GEn14). CC10 was determined for all isolates (GLc03: 36.9 µg/mL; GLc05: 51.2 µg/mL; GEn09: 88.1 µg/mL; GEn12: 99.9 µg/mL; GEn14: 275 µg/mL; and GEn17: 62.2 µg/mL) and considered for antiviral activity assays. Antiviral activity before virus adsorption was recorded against PV-1 for GLc05 (4.9%), GEn09 (3.4%), GEn12 (24.7%) and GEn17 (23.5%), and against HSV-1 for GEn12 (27.9%), GEn14 (58.7%) and GEn17 (39.2%). Antiviral activity after virus adsorption was identified against PV-1 for GLc05 (32.7%), GEn09 (91.0%), GEn12 (93.7%) and GEn17 (57.2%), and against HSV-1 for GEn17 (71.6%). The results obtained indicate the potential of some bacteriocins, particularly those produced by E. durans strains investigated in the present study, in viral inhibition and their application as new antiviral agents.