Microbiologia

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11840

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthora perniciosa, the causal agent of witches' broom disease of Theobroma cacao
    (Genetics and Molecular Biology, 2009) Lima, Juliana O.; Pereira, Jorge F.; Rincones, Johana; Barau, Joan G.; Araújo, Elza F.; Pereira, Gonçalo A. G.; Queiroz, Marisa V.
    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.
  • Imagem de Miniatura
    Item
    PCR amplification and sequence analyses of Reverse Transcriptase-like genes in Crinipellis perniciosa isolates
    (Fitopatologia Brasileira, 2007-09) Pereira, Jorge F.; Ignacchiti, Mariana D. C.; Araújo, Elza F.; Brommonschenkel, Sérgio H.; Cascardo, Júlio C. M.; Pereira, Gonçalo A. G.; Queiroz, Marisa V.
    Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from the gypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.
  • Imagem de Miniatura
    Item
    Development of a transformation system for Crinipellis perniciosa, the causal agent of witches' broom in cocoa plants
    (Current Genetics, 2002-12-17) Lima, Juliana Oliveira; Santos, Jildete Karla dos; Pereira, Jorge Fernando; Resende, Mário Lúcio Vilela de; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de
    Protoplasts of the pathogenic plant fungus, Crinipellis perniciosa, were transformed to hygromycin B resistance using the pAN7-1 plasmid, which contains the Escherichia coli hph gene under the control of Aspergillus nidulans regulatory sequences. The pAN7-1 plasmid was introduced by PEG/CaCl2 treatment. Transformation frequencies of 1.6–2.5 transformants/μg of DNA were achieved. About 54% of the transformants were abortive and 40 analyzed transformants were mitotically stable and showed different hygromycin B resistance levels. The presence of the hph gene was checked by PCR in five transformants and the integration of multiple plasmid copies into different genome sites was observed by Southern analysis. This is the first report of a C. perniciosa transformation system and represents an important step for further research into genetic manipulation of this fungal plant pathogen.
  • Imagem de Miniatura
    Item
    The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao
    (Genetics and Molecular Biology, 2008-12-05) Lima, Juliana O.; Pereira, Jorge F.; Rincones, Johana; Barau, Joan G.; Araújo, Elza F.; Pereira, Gonçalo A.G.; Queiroz, Marisa V.
    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.