Microbiologia

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11840

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 14
  • Imagem de Miniatura
    Item
    Características físico-químicas e microbiológicas de morango minimamente processado
    (Food Science and Technology, 2010-01) Ponce, Adriana dos Reis; Bastiani, Maria Inês Dantas; Minim, Valéria Paula; Vanetti, Maria Cristina Dantas
    O presente trabalho teve como objetivo avaliar as alterações físico-químicas e microbiológicas de morangos submetidos ao processamento mínimo. Foram avaliados os efeitos da lavagem com cloreto de cálcio ou polietilenoglicol na microbiota contaminante e na textura dos morangos e da sanificação com ozônio gasoso ou clorado orgânico. Análises de textura, cor, perda de massa e microbiota contaminante foram feitas durante o armazenamento a 5 °C por 12 dias em embalagens envoltas com uma a quatro camadas de filme de cloreto de polivinil (PVC). A adição de até 1,5% de cloreto de cálcio ou de 0,5% de polietilenoglicol na água de lavagem não garantiu a manutenção da textura do morango ao final do período de armazenamento. A ozonização dos morangos por 60 minutos foi mais efetiva para reduzir (p < 0,05) a contagem de mesófilos aeróbios, fungos e leveduras e coliformes do que a ozonização por 30 minutos ou a imersão em solução de clorado orgânico. Os morangos armazenados em embalagens recobertas com três camadas de filme PVC apresentaram aumento na textura e na intensidade de escurecimento e redução na microbiota contaminante. Os principais fungos isolados de morangos minimamente processados durante o armazenamento pertenciam ao gênero Fusarium e à espécie Cladosporium cladosporioides.
  • Imagem de Miniatura
    Item
    Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste
    (Brazilian Archives of Biology and Technology, 2011-09) Kasuya, Maria Catarina Megumi; Casaril, Kérley Braga Pereira Bento; Vanetti, Maria Cristina Dantas
    The antimicrobial activity and mineral composition of shiitake mushrooms were evaluated in four isolates of Lentinula edodes. Mushrooms were cultivated on artificial logs, based on eucalyptus sawdust enriched with 20% rice, wheat, or soybean bran, or combination of 10% of two of these supplements. The substrates were humidified with a 0.1% mate tea extract or water. Logs of Eucalyptus grandis were also used to cultivate the shiitake mushrooms. The antimicrobial activity of an aqueous extract, corresponding to 40 mg of mushroom dry matter, was in some cases, depending on the isolate, able to inhibit both Bacillus subtilis and Escherichia coli K-12, independent of substrate composition or the growth stage of the mushrooms. Nitrogen, phosphorus, potassium, magnesium and calcium concentrations varied according to the substrate on which the mushrooms were cultivated, being, generally, higher with cultivation on artificial rather than natural eucalyptus logs. It could be concluded that, in addition to the fungal isolate, substrate composition and, processing methods must be considered during the production of antimicrobial substance(s) as well as in the mushroom nutritional composition
  • Imagem de Miniatura
    Item
    Acid and low temperature treatments on Salmonella Enteritidis inoculated in pork and its subsequent survival in simulated gastric fluid
    (Ciência Rural, 2016-03) Santos, Míriam Teresinha dos; Paes, Simone Albino; Vanetti, Maria Cristina Dantas; Silva, Simone Quintao
    The objective of this study was to evaluate the acid resistance of Salmonella enterica serovar Enteritidis (S. Enteritidis) in stored pork and in simulated gastric fluid (SGF). A culture of S. Enteritidis was subjected to acid treatment prior to inoculation into pork, stored under refrigeration at frozen temperatures and exposed to SGF. The S. Enteritidis CCS3 and ATCC 13076 strains previously subjected to acid treatment (at pH 4.0-5.0) were inoculated in pork and stored at 4[degrees]C and -18[degrees]C. Storage at 40C did not affect the populations of both S. Enteritidis strains. After 84 days at -18[degrees]C, the mean population of both CCS3 and ATCC strains were reduced by 0.8 and 1.5 log cycles, respectively. Prior acid treatment did not enhance the survival of both strains at low temperatures. After acid treatment and low temperature storage, S. Enteritidis ATCC 13076 lost culturability after being exposed to SGF for 10 minutes. In contrast, S. Enteritidis CCS3 was tolerant until three hours of SGF exposure. S. Enteritidis CCS3 submitted to pH 4.0 was more tolerant to SGF exposure than when submitted to pH 4.5, 5.0 and without acid treatment. Therefore, this study indicates that exposure to an acidic and cold environment during processing enhanced the ability of S. Enteritidis to survive in the gastric environment of the human stomach, possibly increasing the risk of a Salmonella infection after consumption of pork.
  • Imagem de Miniatura
    Item
    Temperature and pH influence the susceptibility of Salmonella Typhimurium to nisin combined with EDTA
    (Food Control, 2016-03) Prudêncio, Cláudia Vieira; Mantovani, Hilário Cuquetto; Cecon, Paulo Roberto; Prieto, Miguel; Vanetti, Maria Cristina Dantas
    antibiotics, such as nisin, generally act on Gram-positive bacteria, whereas Gram-negative bacteria exhibit natural resistance to the action of these bacteriocins. However, Gram-negative bacteria can become susceptible to the action of these antimicrobial peptides with the use of chelating agents, such as EDTA. The activity of bacteriocins can be influenced by several factors, such as environmental conditions and chemical composition of the medium. Moreover, the susceptibility of target microorganism can be altered, due to changes in cellular composition induced by environmental conditions. In this study, we examined the combined effect of variations in temperature and pH on the susceptibility of Salmonella Typhimurium to the action of nisin associated with EDTA. The reduction in the number of viable cells of Salmonella Typhimurium varied according to the temperature and pH, and major reduction in logarithmic cycles of viable cells occurred with a temperature increase. Under low temperature and low pH, a considerable reduction in the viability was also observed after prolonged exposure to bacteriocin, regardless of the presence of EDTA. According to results, temperature and pH conditions influence on the susceptibility of Salmonella Typhimurium to combination of nisin and EDTA and thus should be considered to establish optimal conditions for nisin use.
  • Imagem de Miniatura
    Item
    Morphological changes in Salmonella Typhimurium caused by the lantibiotic bovicin HC5 in association with EDTA
    (Annals of Microbiology, 2015-07-03) Prudêncio, Cláudia Vieira; Ferreira, Sukarno Olavo; Mantovani, Hilário Cuquetto; Vanetti, Maria Cristina Dantas
    Bacteriocins, particularly those produced by Gram-positive bacteria, have in recent years been considered promising antimicrobial agents to inhibit bacterial growth in food, and thus are potential food preservatives. These peptides generally exhibit a spectrum of action limited to Gram-positive bacteria. However, their action can be extended to Gram-negative bacteria through association with chelating agents. In the present study, we evaluated the occurrence of morphological changes on the cell envelope of Salmonella Typhimurium cells treated with bovicin HC5—a lantibiotic from Streptococcus bovis HC5—in association with EDTA. The morphological changes of the cells were visualized by atomic force microscopy (AFM), and the increase in cell membrane permeability was confirmed by the leakage of potassium ions (K+). The images displayed changes in the cell envelope, with increased surface roughness and a decreased cell volume. These changes indicate that EDTA plays a role in the destabilization of the outer membrane, allowing bovicin HC5 to act on the cytoplasmic membrane through the formation of pores, which was confirmed by the detection of potassium in the cell supernatant. These results suggest that bovicin HC5 combined with EDTA has potential for use on Salmonella cells.
  • Imagem de Miniatura
    Item
    Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology
    (Journal of Food Science and Technology, 2015-02-01) Prudêncio, Cláudia Vieira; Vanetti, Maria Cristina Dantas; Santos, Miriam Teresinha dos
    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gramnegative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.
  • Imagem de Miniatura
    Item
    Endophytic bacteria isolated from common bean (Phaseolus vulgaris) exhibiting high variability showed antimicrobial activity and quorum sensing inhibition
    (Current Microbiology, 2015-07-23) Lopes, Ralf Bruno Moura; Vanetti, Maria Cristina Dantas; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de; Costa, Leonardo Emanuel de Oliveira
    Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the ‘Talismã’ cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant.
  • Imagem de Miniatura
    Item
    Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals
    (Journal of Basic Microbiology, 2015-11-11) Campos‐Galvão, Maria Emilene Martino; Ribon, Andrea Oliveira Barros; Araújo, Elza Fernandes; Vanetti, Maria Cristina Dantas
    Quorum sensing is used by bacteria to coordinate gene expression in response to population density and involves the production, detection and response to extracellular signaling molecules known as autoinducers (AIs). Salmonella does not synthesize the AI-1, acyl homoserine lactone (AHL) common to gram-negative bacteria; however, it has a receptor for AI-1, the SdiA protein. The effect of SdiA in modulating phenotypes of Salmonella has not been elucidated. In this report, we provide evidence that the AIs-1 affect Salmonella enterica serovar Enteritidis behavior by enhancing the biofilm formation and expression of virulence genes under anaerobic conditions. Biofilm formation by Salmonella was detected by the crystal violet method and by scanning electron microscopy. The presence of AHLs, particularly C12-HSL, increased biofilm formation and promoted expression of biofilm formation genes (lpfA, fimF, fliF, glgC) and virulence genes (hilA, invA, invF). Our results demonstrated that AHLs produced by other organisms played an important role in virulence phenotypes of Salmonella Enteritidis.
  • Imagem de Miniatura
    Item
    Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions
    (Archives of Microbiology, 2016-11-12) Almeida, Felipe Alves de; Pimentel-Filho, Natan de Jesus; Pinto, Uelinton Manoel; Mantovani, Hilário Cuquetto; Oliveira, Leandro Licursi de; Vanetti, Maria Cristina Dantas
    Quorum sensing regulates a variety of phenotypes in bacteria including the production of virulence factors. Salmonella spp. have quorum sensing systems mediated by three autoinducers (AI-1, AI-2, and AI-3). The AI-1-mediated system is incomplete in that the bacterium relies on the synthesis of signaling molecules by other microorganisms. This study aimed to evaluate the influence of the AI-1 N-dodecanoyl-DL-homoserine lactone (C12-HSL) on the growth, motility, adhesion, and biofilm formation of Salmonella enterica serovar Enteritidis PT4 578 on a polystyrene surface. Experiments were conducted at 37 °C in anaerobic tryptone soy broth supplemented with C12-HSL and/or a mixture of four synthetic furanones, at the concentration of 50 nM each. The planktonic growth, adhesion, swarming, and twitching motility were not altered in the presence of C12-HSL and/or furanones under anaerobic conditions. However, C12-HSL induced biofilm formation after 36 h of cultivation as determined by quantification of biofilm formation, by enumeration of adhered cells to polystyrene coupons, and finally by imaging the presence of multilayered cells on an epifluorescence microscope. When furanones were present in the medium, an antagonistic effect against C12-HSL on the biofilm development was observed. The results demonstrate an induction of biofilm formation in Salmonella Enteritidis by AI-1 under anaerobic conditions. Considering that Salmonella does not produce AI-1 but respond to it, C12-HSL synthesized by other bacterial species could trigger biofilm formation by this pathogen in conditions that are relevant for its pathogenesis.
  • Imagem de Miniatura
    Item
    Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion
    (International Journal of Food Microbiology, 2014-11-03) Pimentel-Filho, Natan de Jesus; Martins, Mayra Carla de Freitas; Nogueira, Guilherme Bicalho; Mantovani, Hilário Cuquetto; Vanetti, Maria Cristina Dantas
    Staphylococcus aureus is an opportunistic pathogen often multidrug-resistant that not only causes a variety of human diseases, but also is able to survive on biotic and abiotic surfaces through biofilm communities. The best way to inhibit biofilm establishment is to prevent cell adhesion. In the present study, subinhibitory concentrations of the bacteriocins bovicin HC5 and nisin were tested for their capability to interfere with the adhesion of S. aureus to polystyrene. Subinhibitory dosages of the bacteriocins reduced cell adhesion and this occurred probably due to changes in the hydrophobicity of the bacterial cell and polystyrene surfaces. After treatment with bovicin HC5 and nisin, the surfaces became more hydrophilic and the free energy of adhesion (∆Gadhesion) between bacteria and the polystyrene surface was unfavorable. The transcriptional level of selected genes was assessed by RT-qPCR approach, revealing that the bacteriocins affected the expression of some important biofilm associated genes (icaD, fnbA, and clfB) and rnaIII, which is involved in the quorum sensing mechanism. The conditioning of food-contact surfaces with bacteriocins can be an innovative and powerful strategy to prevent biofilms in the food industry. The results are relevant for food safety as they indicate that bovicin HC5 and nisin can inhibit bacterial adhesion and consequent biofilm establishment, since cell adhesion precedes biofilm formation.