Microbiologia

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11840

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Production and regeneration of protoplasts from orchid Mycorrhizal Fungi Epulorhiza repens and Ceratorhiza sp.
    (Brazilian Archives of Biology and Technology, 2010-01) Coelho, Irene da Silva; Queiroz, Marisa Vieira de; Costa, Maurício Dutra; Kasuya, Maria Catarina Megumi; Araújo, Elza Fernandes de
    The aim of this work was to study the standardization of conditions to obtain and regenerate Epulorhiza repens and Ceratorhiza sp. protoplasts. For E. repens, the largest number of protoplasts (8.0 × 106 protoplasts/mL) was obtained in 0.6 M KCl, using 15 mg/mL of Lysing Enzymes, and 2-day-old fungal mycelium. When 0.5 M sucrose was used as osmotic stabilizer, the highest frequency of regeneration was achieved (8.5 %); 80.0 % of protoplasts were nucleated, and 20.0 % anucleated. For Ceratorhiza sp., the largest number of protoplasts (4.0 × 107 protoplasts/mL) was achieved in 0.6 M NaCl, when 15 mg/mL of Lysing Enzymes and 15mg/mL of Glucanex, with 2-day-old fungal mycelium were used. The highest frequency of regeneration was 6.7 % using 0.5 M sucrose as osmotic stabilizer; 88.8 % of protoplasts were nucleated, and 11.2 % anucleated.
  • Imagem de Miniatura
    Item
    Basidiosporogenesis, meiosis, and post-meiotic mitosis in the ectomycorrhizal fungus Pisolithusmicrocarpus
    (Fungal Genetics and Biology, 2010-03-03) Campos, André Narvaes da Rocha; Costa, Maurício Dutra
    Pisolithus microcarpus (Cooke and Massee) G. Cunn. is a model organism for the studies on the ecology, physiology, and genetics of the ectomycorrhizal associations. However, little is known about the basidiosporogenesis in this species and, in particular, the nuclear behavior after karyogamy. In this work, the events involved in basidiosporogenesis and meiosis in P. microcarpus were analyzed using fluorescence and scanning electron microscopy. The basidia are formed inside peridioles by the differentiation of the cells along the whole hyphae. Basidial cells measure 12–18 μm in length and 6–7 μm in diameter. P. microcarpus produces eight basidiospores per basidium imbibed in a gelatinous matrix in the basidiocarp. The basidiospores are globose, equinate, with blunt spines, and measure 6–8 μm. Karyogamy can take place inside basidia as well as in undifferentiated hyphal cells followed by nuclear migration to a newly developed basidium where meiosis takes place. After the formation of the meiotic tetrad, one round of post-meiotic mitosis occurs, resulting in the production of eight nuclei per basidium. The newly-formed nuclei migrate into the basidiospores asynchronously, resulting in the production of eight uninucleate spores. This corresponds to pattern A of post-meiotic mitosis. This work is the first report on meiosis and post-meiotic mitosis during basidiosporogenesis in P. microcarpus and contributes to clarify some aspects of the biology and genetics of this ectomycorrhizal species.
  • Imagem de Miniatura
    Item
    Histochemistry and storage of organic compounds during basidiosporogenesis in the ectomycorrhizal fungus Pisolithus microcarpus
    (World Journal of Microbiology and Biotechnology, 2010-02-25) Campos, André Narvaes da Rocha; Costa, Maurício Dutra
    Knowledge on the distribution and storage of different organic compounds during basidiosporogenesis in P. microcarpus is paramount to a better understanding of basidiospore recalcitrance to germination. The objective of this work was to detect the presence and distribution of phenolics, reducing sugars, starch, glycogen, total polysaccharides, RNA, and proteins during P. microcarpus basidiosporogenesis. Starch and reducing sugars were not detected in the fungal basidiocarps, while other polysaccharides predominated in the extracellular matrix at the base of the basidiocarp containing unconsolidated peridioles. Phenolics were also detected in this region. Glycogen was present inside the hyphae, basidia, and basidiospores and constitutes an important storage compound in the fungal basidiocarps. In mature basidiospores, RNA accumulation occurred at discrete locations in the cytoplasmatic periphery, while polysaccharides and proteins were shown to predominate in the cell wall. The presence of glycogen, RNA, and proteins inside the basidiospores strongly indicates provision for future germination and suggests that other factors may also influence basidiospore recalcitrance.
  • Imagem de Miniatura
    Item
    Basidiosporogenesis, meiosis, and post-meiotic mitosis in the ectomycorrhizal fungus Pisolithus microcarpus
    (Fungal Genetics and Biology, 2010-03-03) Campos, André Narvaes da Rocha; Costa, Maurício Dutra
    Pisolithus microcarpus (Cooke and Massee) G. Cunn. is a model organism for the studies on the ecology, physiology, and genetics of the ectomycorrhizal associations. However, little is known about the basidiosporogenesis in this species and, in particular, the nuclear behavior after karyogamy. In this work, the events involved in basidiosporogenesis and meiosis in P. microcarpus were analyzed using fluorescence and scanning electron microscopy. The basidia are formed inside peridioles by the differentiation of the cells along the whole hyphae. Basidial cells measure 12–18 μm in length and 6–7 μm in diameter. P. microcarpus produces eight basidiospores per basidium imbibed in a gelatinous matrix in the basidiocarp. The basidiospores are globose, equinate, with blunt spines, and measure 6–8 μm. Karyogamy can take place inside basidia as well as in undifferentiated hyphal cells followed by nuclear migration to a newly developed basidium where meiosis takes place. After the formation of the meiotic tetrad, one round of post-meiotic mitosis occurs, resulting in the production of eight nuclei per basidium. The newly-formed nuclei migrate into the basidiospores asynchronously, resulting in the production of eight uninucleate spores. This corresponds to pattern A of post-meiotic mitosis. This work is the first report on meiosis and post-meiotic mitosis during basidiosporogenesis in P. microcarpus and contributes to clarify some aspects of the biology and genetics of this ectomycorrhizal species.