Microbiologia

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11840

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 7 de 7
  • Imagem de Miniatura
    Item
    Production and regeneration of protoplasts from orchid Mycorrhizal Fungi Epulorhiza repens and Ceratorhiza sp.
    (Brazilian Archives of Biology and Technology, 2010-01) Coelho, Irene da Silva; Queiroz, Marisa Vieira de; Costa, Maurício Dutra; Kasuya, Maria Catarina Megumi; Araújo, Elza Fernandes de
    The aim of this work was to study the standardization of conditions to obtain and regenerate Epulorhiza repens and Ceratorhiza sp. protoplasts. For E. repens, the largest number of protoplasts (8.0 × 106 protoplasts/mL) was obtained in 0.6 M KCl, using 15 mg/mL of Lysing Enzymes, and 2-day-old fungal mycelium. When 0.5 M sucrose was used as osmotic stabilizer, the highest frequency of regeneration was achieved (8.5 %); 80.0 % of protoplasts were nucleated, and 20.0 % anucleated. For Ceratorhiza sp., the largest number of protoplasts (4.0 × 107 protoplasts/mL) was achieved in 0.6 M NaCl, when 15 mg/mL of Lysing Enzymes and 15mg/mL of Glucanex, with 2-day-old fungal mycelium were used. The highest frequency of regeneration was 6.7 % using 0.5 M sucrose as osmotic stabilizer; 88.8 % of protoplasts were nucleated, and 11.2 % anucleated.
  • Imagem de Miniatura
    Item
    Pectin lyase production by recombinant Penicillium griseoroseum strain 105
    (Canadian Journal of Microbiology, 2010) Teixeira, Janaina Aparecida; Queiroz, Marisa Vieira de; Araújo, Elza Fernandes de; Cardoso, Patrícia Gomes
    Recombinant Penicillium griseoroseum strain 105 overproduces an extracellular pectin lyase (PL) under the transcriptional control of the strong gpdA promoter of Aspergillus nidulans. Our aim was to evaluate PL production by recombinant P. griseoroseum strain 105 in submerged fermentation system bioreactors BioFloIII and BioFloIV using 2 or 10 L working volumes under different growth conditions and to analyze the production of cellulase, polygalacturonase, pectin methylesterase, and protease. PL overproduction by recombinant P. griseoroseum strain 105 was 112 times higher than that of P. griseoroseum PG63 grown in sugarcane juice. Cellulases and proteases were not detected in the culture filtrate, and evaluation for extracellular proteins in the culture medium by SDS–PAGE showed the presence of a 36 kDa predominant band, similar to the molecular mass estimated from the nucleotide sequence of plg1 gene for PL of P. griseoroseum strain 105. This recombinant strain provides the advantage of PL production, which predominates over other extracellular proteins usually present in most commercial pectinase preparations, using sugarcane juice as a substrate of low cost.
  • Imagem de Miniatura
    Item
    Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa
    (European Journal of Plant Pathology, 2012-11) Santana, Mateus Ferreira; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de; Souza, Jorge Teodoro de; Mizubuti, Eduardo Seiti Gomide
    Moniliophthora perniciosa is a fungus that causes witches’ broom disease (WBD) in the cacao tree (Theobroma cacao). The M. perniciosa genome contains different transposable elements; this prompted an evaluation of the use of its retrotransposons as molecular markers for population studies. The inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) techniques were used to study the variability of 70 M. perniciosa isolates from different geographic origins and biotypes. A total of 43 loci was amplified. Cluster analysis of different geographical regions of C biotype revealed two large groups in the state of Bahia, Brazil. Techniques using retrotransposon-based molecular markers showed advantages over previously used molecular techniques for the study of genetic variability in M. perniciosa.
  • Imagem de Miniatura
    Item
    Beginning to understand the role of sugar carriers in Colletotrichum lindemuthianum: the function of the gene mfs1
    (Journal of Microbiology, 2012-10-12) Pereira, Monalessa Fábia; Santos, Carolina Maria de Araújo dos; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de; Bazzolli, Denise Mara Soares
    Fungi of the Colletotrichum genus are among the most prominent phytopathogens that cause diseases with a considerable economic impact, such as anthracnose. The hemibiotrophic fungus Colletotrichum lindemuthianum (teleomorph Glomerella cingulata f. sp. phaseoli) is the causal agent of the anthracnose of the common bean; and similarly to other phytopathogens, it uses multiple strategies to gain access to different carbon sources from its host. In this study, we examine mfs1, a newly identified C. lindemuthianum hexose transporter. The mfs1 gene is expressed only during the necrotrophic phase of the fungus’ interaction within the plant and allows it to utilize the available sugars during this phase. The deletion of mfs1 gene resulted in differential growth of the fungus in a medium that contained glucose, mannose or fructose as the only carbon source. This study is the first to describe a hexose transporter in the hemibiotrophic pathogen C. lindemuthianum and to demonstrate the central role of this protein in capturing carbon sources during the necrotrophic development of the plant/pathogen interaction.
  • Imagem de Miniatura
    Item
    Boto, a class II transposon in Moniliophthora perniciosa, is the first representative of the PIF/ Harbinger superfamily in a phytopathogenic fungus
    (Microbiology, 2012-10-24) Pereira, Jorge Fernando; Almeida, Ana Paula Morais Martins; Cota, Júnio; Pamphile, João Alencar; Silva, Gilvan Ferreira da; Araújo, Elza Fernandes de; Gramacho, Karina Peres; Brommonschenkel, Sérgio Hermı́nio; Pereira, Gonçalo Amarante Guimarães; Queiroz, Marisa Vieira de
    Boto, a class II transposable element, was characterized in the Moniliophthora perniciosa genome. The Boto transposase is highly similar to plant PIF-like transposases that belong to the newest class II superfamily known as PIF/Harbinger. Although Boto shares characteristics with PIF-like elements, other characteristics, such as the transposase intron position, the position and direction of the second ORF, and the footprint, indicate that Boto belongs to a novel family of the PIF/Harbinger superfamily. Southern blot analyses detected 6–12 copies of Boto in C-biotype isolates and a ubiquitous presence among the C- and S-biotypes, as well as a separation in the C-biotype isolates from Bahia State in Brazil in at least two genotypic groups, and a new insertion in the genome of a C-biotype isolate maintained in the laboratory for 6 years. In addition to PCR amplification from a specific insertion site, changes in the Boto hybridization profile after the M. perniciosa sexual cycle and detection of Boto transcripts gave further evidence of Boto activity. As an active family in the genome of M. perniciosa, Boto elements may contribute to genetic variability in this homothallic fungus. This is the first report of a PIF/Harbinger transposon in the genome of a phytopathogenic fungus.
  • Imagem de Miniatura
    Item
    Morphological and molecular characterization of Pisolithus in soil under eucalyptus plantations in Brazil
    (Revista Brasileira de Ciência do Solo, 2010-10) Kasuya, Maria Catarina Megumi; Coelho, Irene da Silva; Campos, Daniela Tiago da Silva; Araújo, Elza Fernandes de; Tamai, Yutaka; Miyamoto, Toshizumi
    Eighteen Pisolithus basidiomes were collected from Eucalyptus plantations in the state of Minas Gerais, Brazil. These basidiomes were characterized morphologically and molecularly. The basidiomes varied in shape, color and size. One of them was found underground, indicating a hypogeous fungus. The main morphological distinctive characteristic was spore ornamentation, which distinguished two groups. One group with short and erect spines was identified as Pisolithus microcarpus, and the other with long and curved spines as Pisolithus marmoratus, after analyzing the cladogram obtained by phylogenetic relationship based on internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA of these isolates.
  • Imagem de Miniatura
    Item
    Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)
    (Brazilian Journal of Microbiology, 2012-06-07) Costa, Leonardo Emanuel de Oliveira; Queiroz, Marisa Vieira de; Borges, Arnaldo Chaer; Moraes, Celia Alencar de; Araújo, Elza Fernandes de
    The common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.5 x 102 to 2.8 x 103 CFU g-1 of fresh weight. Of the 158 total isolates, 36.7% belonged to the Proteobacteria, 32.9% to Firmicutes, 29.7% to Actinobacteria, and 0.6% to Bacteroidetes. The three P. vulgaris cultivars showed class distribution differences among Actinobacteria, Alphaproteobacteria and Bacilli. Based on 16S rDNA sequences, 23 different genera were isolated comprising bacteria commonly associated with soil and plants. The genera Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphylococcus and Stenotrophomonas were isolated from all three cultivars. To access and compare the community structure, diversity indices were calculated. The isolates from the Talismã cultivar were less diverse than the isolates derived from the other two cultivars. The results of this work indicate that the cultivar of the plant may contribute to the structure of the endophytic community associated with the common bean. This is the first report of endophytic bacteria from the leaves of P. vulgaris cultivars. Future studies will determine the potential application of these isolates in biological control, growth promotion and enzyme production for biotechnology.