Bioquímica e Biologia Molecular

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11837

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Purification and characterization of an a-galactosidase from Aspergillus fumigatus
    (Brazilian Archives of Biology and Technology, 2005-03) Rezende, Sebastião Tavares de; Guimarães, Valéria Monteze; Rodrigues, Marília de Castro; Felix, Carlos Roberto
    Aspergillus fumigatus secreted invertase (b-fructofuranosidase) and a-galactosidase enzymatic activities able to hydrolyzing raffinose oligosaccharides (RO). a-Galactosidase was induced by galactose, melibiose and raffinose, but galactose was the most efficient inducer. It was purified by gel filtration and two ion exchange chromatographies and showed Mw of 54.7 kDa. The purified enzyme showed maximal activity against p-nitrophenyl-a-D-galactopyranoside (pNPGal) at pH 4.5-5.5 and 55 °C, and retained about 80% of the original activity after incubation for 90 minutes at 50ºC. The KM for pNPGal was 0.3 mM. Melibiose was hydrolyzed by the enzyme but raffinose was very poor substrate.
  • Imagem de Miniatura
    Item
    Extracellular α-Galactosidase from Debaryomyces hansenii UFV-1 and Its use in the hydrolysis of raffinose oligosaccharides
    (Journal of Agricultural and Food Chemistry, 2006-02-17) Rezende, Sebastião T. de; Marques, Virgínia M.; Trevizano, Larissa M.; Passos, Flávia M. L.; Oliveira, Maria G. A.; Bemquerer, Marcelo P.; Oliveira, Jamil S.; Guimarães, Valéria M.; Viana, Pollyanna A.
    Raffinose oligosaccharides (RO) are the factors primarily responsible for flatulence upon ingestion of soybean-derived products. ROs are hydrolyzed by α-galactosidases that cleave α-1,6-linkages of α-galactoside residues. The objectives of this study were the purification and characterization of extracellular α-galactosidase from Debaryomyces hansenii UFV-1. The enzyme purified by gel filtration and anion exchange chromatographies presented an Mr value of 60 kDa and the N-terminal amino acid sequence YENGLNLVPQMGWN. The Km values for hydrolysis of pNPαGal, melibiose, stachyose, and raffinose were 0.30, 2.01, 9.66, and 16 mM, respectively. The α-galactosidase presented absolute specificity for galactose in the α-position, hydrolyzing pNPGal, stachyose, raffinose, melibiose, and polymers. The enzyme was noncompetitively inhibited by galactose (Ki = 2.7 mM) and melibiose (Ki = 1.2 mM). Enzyme treatments of soy milk for 4 h at 60 °C reduced the amounts of stachyose and raffinose by 100%.
  • Imagem de Miniatura
    Item
    Covalent immobilization of α-Galactosidase from Penicillium griseoroseum and its application in Oligosaccharides Hydrolysis
    (Applied Biochemistry and Biotechnology, 2008-10-21) Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; Queiroz, Marisa Vieira de; Araújo, Elza Fernandes de; Almeida, Maíra Nicolau de; Barros, Everaldo Gonçalves de; Rezende, Sebastião Tavares de
    Partially purified α-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized α-galactosidase showed optimal activity at 45 °C and pH values of 5 and 4, respectively. Immobilized α-galactosidase was more stable at higher temperatures and pH values. Immobilized α-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 °C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized α-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized α-galactosidase respectively. Immobilized α-galactosidase was reutilized eight times without any decrease in its activity.