Bioquímica e Biologia Molecular

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11837

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family
    (Genetics and Molecular Biology, 2007) Fietto, Luciano G.; Costa, Maximiller D. L.; Cruz, Cosme D.; Souza, Alessandra A.; Machado, Marcos A.; Fontes, Elizabeth P. B.
    The completion of the genome sequencing of the Arabidopsis thaliana model system provided a powerful molecular tool for comparative analysis of gene families present in the genome of economically relevant plant species. In this investigation, we used the sequences of the Arabidopsis Hsp70 gene family to identify and annotate the Citrus Hsp70 genes represented in the CitEST database. Based on sequence comparison analysis, we identified 18 clusters that were further divided into 5 subgroups encoding four mitochondrial mtHsp70s, three plastid csHsp70s, one ER luminal Hsp70 BiP, two HSP110/SSE-related proteins and eight cytosolic Hsp/Hsc70s. We also analyzed the expression profile by digital Northern of each Hsp70 transcript in different organs and in response to stress conditions. The EST database revealed a distinct population distribution of Hsp70 ESTs among isoforms and across the organs surveyed. The Hsp70-5 isoform was highly expressed in seeds, whereas BiP, mitochondrial and plastid HSp70 mRNAs displayed a similar expression profile in the organs analyzed, and were predominantly represented in flowers. Distinct Hsp70 mRNAs were also differentially expressed during Xylella infection and Citrus tristeza viral infection as well as during water deficit. This in silico study sets the groundwork for future investigations to fully characterize functionally the Citrus Hsp70 family and underscores the relevance of Hsp70s in response to abiotic and biotic stresses in Citrus.
  • Imagem de Miniatura
    Item
    Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response
    (Gene, 2009-09-01) Pinheiro, Guilherme L.; Marques, Carolina S.; Costa, Maximiller D.B.L.; Reis, Pedro A. B.; Alves, Murilo S.; Carvalho, Claudine M.; Fietto, Luciano G.; Fontes, Elizabeth P. B.
    We performed an inventory of soybean NAC transcription factors, in which 101 NAC domain-containing proteins were annotated into 15 different subgroups, showing a clear relationship between structure and function. The six previously described GmNAC proteins (GmNAC1 to GmNAC6) were located in the nucleus and a transactivation assay in yeast confirmed that GmNAC2, GmNAC3, GmNAC4 and GmNAC5 function as transactivators. We also analyzed the expression of the six NAC genes in response to a variety of stress conditions. GmNAC2, GmNAC3 and GmNAC4 were strongly induced by osmotic stress. GmNAC3 and GmNAC4 were also induced by ABA, JA and salinity but differed in their response to cold. Consistent with an involvement in cell death programs, the transient expression of GmNAC1, GmNAC5 and GmNAC6 in tobacco leaves resulted in cell death and enhanced expression of senescence markers. Our results indicate that the described soybean NACs are functionally non-redundant transcription factors involved in response to abiotic stresses and in cell death events in soybean.