Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/673
Tipo: Tese
Título: Modelos de remoção de matéria orgânica e nutrientes de águas residuárias da suinocultura em sistemas alagados construídos
Título(s) alternativo(s): Models for removal of organic matter and nutrients from swine wastewater in constructed wetland
Autor(es): Fia, Fátima Resende Luiz
Primeiro Orientador: Matos, Antonio Teixeira de
Primeiro coorientador: Borges, Alisson Carraro
Segundo coorientador: Tótola, Marcos Rogério
Primeiro avaliador: Sperling, Marcos Von
Segundo avaliador: Monaco, Paola Alfonsa Vieira Lo
Terceiro avaliador: Ferreira, Paulo Afonso
Abstract: Embora existam, na literatura científica, vários estudos nos quais foi avaliado o potencial uso de sistemas alagados construídos (SACs) no tratamento de águas residuárias, não há uma indicação segura de parâmetros de projeto para o dimensionamento de SACs, principalmente aqueles destinados ao tratamento de águas residuárias agroindustriais. Neste estudo, teve-se por objetivo avaliar o desempenho de SACs no tratamento das águas residuárias da suinocultura (ARS), sob diferentes taxas de carregamento orgânico (TCOA), e obter parâmetros cinéticos para dimensionamento dos SACs a serem utilizados no tratamento dessas águas, além de avaliar a capacidade de remoção de nutrientes pelas espécies vegetais neles cultivadas. Para possibilitar este estudo, foram construídos, na Área Experimental de Armazenamento e Processamento de Produtos Agrícolas, do Departamento de Engenharia Agrícola da UFV, em condições de casa de vegetação, nove tanques de 2,0 m x 0,5 m x 0,6 m, construídos de fibra de vidro e preenchidos com uma camada de 0,55 m de brita zero, mantendo-se o nível de água a 0,5 m. Nos SAC3, SAC5, SAC7 e SAC9 foi plantado o capim tifton-85 (Cynodon spp.) e nos SAC2, SAC4, SAC6 e SAC8 foi plantada a taboa (Typha latifolia). O SAC1 foi utilizado como controle, não sendo, nele, cultivada nenhuma espécie vegetal. Após um mês de implantação do experimento, iniciou-se a aplicação da ARS, proveniente do Setor de Suinocultura do Departamento de Zootecnia da UFV, nos SACs. A diferenciação na carga orgânica foi realizada com a aplicação de diferentes vazões afluentes nos SACs, que corresponderam a TCOA de 163 (SAC1, SAC2 e SAC3), 327 (SAC4 e SAC5), 460 (SAC6 e SAC7) e 561 kg ha-1 d-1 de DBO (SAC8 e SAC9), sendo os tempos de detenção hidráulica (TDH) referentes a cada TCOA, respectivamente de 11,9, 5,9, 4,2 e 3,6 dias. Para avaliação das eficiências na remoção de poluentes, foram realizadas 12 amostragens dos afluentes e efluentes dos SACs, entre os meses de abril e setembro de 2009, sendo o sistema de tratamento monitorado por um período de 120 dias. Nove das 12 amostragens foram feitas ao longo dos SACs, em pontos espaçados a cada 0,33 m do comprimento, para obtenção de coeficientes de degradação da matéria orgânica e de remoção de nutrientes, o que foi efetuado por meio de ajuste de modelos de predição de primeira ordem (REED et al., 1995); e suas variantes, tal como a proposta por BRASIL et al. (2007), LABER et al. (1999) e COOPER (1999) e por KADLEC & WALLACE (2008). Aos 60 e aos 120 dias após o início da aplicação da ARS e monitoramento dos sistemas, foram realizados os cortes dos vegetais, a fim de se avaliar a produtividade e os teores de nutrientes na parte aérea da vegetação. Quanto à remoção de matéria orgânica na forma de DBO, não foi verificada diferença estatística (p<0,05) entre os diferentes SACs, sendo que as eficiências médias de remoção variaram entre 75 e 88%. As médias de remoção de DQO e SST variaram entre 67 e 82% e 84 e 90% e diferiram entre si, a 5% de probabilidade, pelo Teste Tukey, para as diferentes taxas de carga orgânicas aplicadas (tratamentos). Houve diferença estatística entre as médias de remoção de nitrogênio nos SACs, tendo sido obtidas maiores remoções naqueles que receberam as menores cargas deste nutriente (SAC1, SAC2 e SAC3), tendo a remoção variado de 26 a 40% para as diferentes TCOA. Verificaram-se aumentos nas concentrações de nitrato e nitrito ao longo dos SACs, evidenciando a capacidade de nitrificação do meio, mesmo que pequena, nos sistemas que operaram sob as maiores TCOA. Entre as eficiências médias de remoção de fósforo, verificou-se diferença significativa (p<0,05) entre os diferentes tratamentos, sendo que estas variaram de 65 a 78%, valores que podem ser considerados satisfatórios. A taboa não se adaptou às condições de carregamento impostas aos SACs, produzindo reduzida quantidade de matéria seca (0,75 a 1,76 Mg ha-1) e apresentando completa senescência nos SAC6 e SAC8, dois dos que receberam as maiores TCOA. O capim tifton-85 apresentou bom desenvolvimento e maior produtividade de matéria seca (4,73 a 6,26 Mg ha-1), se destacando em relação à taboa na remoção de nutrientes, exceto no que se refere ao sódio. Apesar de a taboa ter apresentado maior concentração de nutrientes no tecido foliar (exceto nitrogênio e fósforo), o que pode ser atribuído à menor diluição na biomassa produzida, foi a capacidade de produção debiomassa o fator responsável pelas maiores porcentagens de remoção apresentadas pelo capim tifton-85. Em relação aos ajustes de modelos cinéticos, verificou-se que o modelo de primeira ordem e o proposto por LABER et al. (1999) e COOPER (1999) não se ajustaram bem aos dados obtidos neste trabalho, enquanto os modelos de BRASIL et al. (2007) e KADLEC & WALLACE (2008)proporcionaram bom ajuste e descreveram com precisão a cinética de remoção da matéria orgânica (DBO e DQO) e de nutrientes (NTK e P) nos sistemas avaliados, apresentando, geralmente, R2 superior a 90%.
Although there are various studies in scientific literature in which the potential use of constructed wetland (CWs) on treatment of wastewater, there is no secure indication of project parameters for sizing of CWs, principally those destined for treatment of agroindustrial wastewater. The objective of this study was to evaluate the performance of CWs for treatment of swine wastewater (SWW), with different organic loading rates (OLR), and obtain kinetic parameters for sizing of CWs to be used for treatment of these waters, as well as evaluate the nutrient removal capacity by cultivated plant species. To perform this study, nine tanks were constructed at the Experimental Area of Agricultural Product Storage and Processing, of the Department of Agricultural Engineering, UFV, each measuring 2.0 m x 0.5 m x 0.6 m, built of fiberglass, filled with a 0.55 m layer of crushed stone # zero, and a water level maintained at 0.5 m. CW3, CW5, CW7 and CW9 were planted with Tifton 85 Bermudagrass (Cynodon spp.) and in CW2, CW4, CW6 and CW8 cattail was planted (Typha latifolia). The CW1 was used as control, in which no plant species was cultivated. After one month of experimental implementation, application of the ARS was initiated in the CWs, provided by the Swine Producing Sector of the Animal Science Department of UFV. The corresponding OLR of 163 (CW1, CW2 and CW3), 327 (CW4 and CW5), 460 (CW6 and CW7) and 561 kg ha-1 d-1 of BOD (CW8 and CW9) were applied for the hydraulic retention times (HRT) referring to each OLR, respectively, of 11.9, 5.9, 4.2 and 3.6 days. For evaluation of the pollutant removal efficiencies, 12 samples were taken of the CW influent and effluents, between the months of April and September of 2009, for a system monitoring period of 120 days. Nine of the 12 samples were performed along the CWs, in points spaced at every 0.33 m of length to obtain the coefficients of organic matter degradation and removal of nutrients, which was performed by adjusting first order prediction models (REED et al., 1995), and its variants, as proposed by BRASIL et al. (2007), LABER et al. (1999), COOPER (1999) and KADLEC & WALLACE (2008). At 60 and 120 days after beginning application of ARS and monitoring of the systems, the grasses were cut to evaluate productivity and nutrient levels in the aerial part of the plants. In regards to organic matter removal in the form of BOD, no statistical difference (p<0.05) was verified between the different CWs, being that the average removal efficiencies varied between 75 and 88%. The average COD and TSS varied from 67 to 82% and 84 to 90% and differed among themselves at 5% probability by the Tukey Test for the different OLR (treatments). There was statistical difference between the averages of nitrogen removal in the CWs, where the greatest removals were obtained in those which received the lowest nutrient loads (CW1, CW2 and CW3), varying from 26 to 40% for the different OLR. Increase in the concentrations of nitrate and nitrite was verified along the CWs, proving the nitrification capacity of the medium, although small, in systems that operate under greater OLR. Among the efficiencies measured for removal of phosphorus, significant difference (p<0.05) was verified between the different treatments, varying between 65 and 78%, values that can be considered satisfactory. Cattail did not adapt to the loading conditions imposed on the CWs, producing a reduced quantity of dry material (0.75 to 1.76 Mg ha-1) and presenting complete senescence in CW6 and CW8 which received the greatest OLR. Tifton 85 Bermudagrass presented good development and greater productivity of dry material (4.73 to 6.26 Mg ha-1), standing out in relation to cattail for nutrient removal, except for sodium. Despite cattail presenting a greater concentration of nutrients in leaf tissue (except nitrogen and phosphorus), which can be attributed to the lower dilution in the produced biomass, the biomass production capacity was the factor responsible for the greater removal percentages presented by the Tifton 85 Bermudagrass. In relation to adjustment of kinetic models, it was verified that the first order model and that proposed by LABER et al. (1999) and COOPER (1999) did not adjust well to the data obtained in this study, while the models of BRASIL et al. (2007) and KADLEC & WALLACE (2008) were more suitable and precisely described kinetics for removal of organic matter (BOD and COD) and nutrients (TKN and P) in the evaluated systems, generally presenting R2 greater than 90%.
Palavras-chave: Constante cinética
Modelagem
Wetlands
Kinetic constant
Modeling
Wetland
CNPq: CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA::ENGENHARIA DE AGUA E SOLO
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ
Citação: FIA, Fátima Resende Luiz. Models for removal of organic matter and nutrients from swine wastewater in constructed wetland. 2009. 160 f. Tese (Doutorado em Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ) - Universidade Federal de Viçosa, Viçosa, 2009.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/673
Data do documento: 18-Dez-2009
Aparece nas coleções:Engenharia Agrícola

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf3,35 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.