Amaral, Luís G. H. doRighes, Afrânio AlmirSouza Filho, Paulo da S. eCosta, Rafael Dalla2019-01-292019-01-292005-07-250378-3774https://doi.org/10.1016/j.agwat.2004.12.012http://www.locus.ufv.br/handle/123456789/23230The low efficiency water control provided by sluice gates and weirs used in the flooded rice tillage system in Rio Grande do Sul, Brazil, have caused significant water losses. Such devices are utilized to control the water flow from the main to the secondary channels. The water flow through the gates is highly influenced by the water depth fluctuation in the main channel. The purpose of this work was to construct and evaluate a flow regulator to reduce flow variations in the secondary channels, resulting from water level fluctuation in the main channels. The prototype operates with a float that prevents the water head variation over the water passage orifices. The regulator flow control was compared to the sluice gate flow control. Both structures were installed at a lateral inlet, and the depth of water in the main channel ranged from 70 to 90 cm. The flows from the regulator and sluice gate were measured with “H” flumes. To relate the flow provided by the regulator to the water head over the water passage orifices, the regulator was submitted to six different water heads, ranging from 5 to 30 cm. The comparison between the structures showed that both presented variation in the controlled flow. However, the flow control provided by the automatic flow regulator was more effective than that provided by the sluice gate. The controlled flow variation was 5.5% for the automatic flow regulator, and 23.7% for the sluice gate. Regulator flow analysis for the different water heads showed that it can operate with flows ranging from 24 to 49 L s−1. Comparing the sluice gate to the automatic flow regulator, the latter is a more efficient flow control device, reducing the waste of water.pdfengElsevier B. V.Water divisionSluice gateWater controlChannel automationAutomatic regulator for channel flow control on flooded riceArtigo