Bioquímica e Biologia Molecular

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11837

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 7 de 7
  • Imagem de Miniatura
    Item
    Hydrolysis of galacto-oligosaccharides in soy molasses by α -galactosidases and invertase from Aspergillus terreus
    (Brazilian Archives of Biology and Technology, 2010-05) Reis, Angélica Pataro; Guimarães, Valéria Monteze; Ferreira, Joana Gasperazzo; Queiroz, José Humberto de; Oliveira, Maria Goreti Almeida; Falkoski, Daniel Luciano; Almeida, Maíra Nicolau de; Rezende, Sebastião Tavares de
    Two α -galactosidase (P1 and P2) and one invertase present in the culture of Aspergillus terreus grown on wheat straw for 168 h at 28ºC were partially purified by gel filtration and hydrophobic interaction chromatographies. Optimum pH and temperatures for P1, P2 and invertase preparations were 4.5-5.0, 5.5 and 4.0 and 60, 55 and 65ºC, respectively. The KM app for ρ -nitrophenyl-α -D-galactopyranoside were 1.32 mM and 0.72 mM for P1 and P2, respectively, while the KM app value for invertase, using sacarose as a substrate was 15.66 mM. Enzyme preparations P1 and P2 maintained their activities after pre-incubation for 3 h at 50ºC and invertase maintained about 90% after 6 h at 55 ºC. P1 and P2 presented different inhibition sensitivities by Ag+, D-galactose, and SDS. All enzyme preparations hydrolyzed galacto-ologosaccharides present in soymolasses.
  • Imagem de Miniatura
    Item
    Treatment of soy milk with Debaryomyces hansenii cells immobilised in alginate
    (Food Chemistry, 2009-05-15) Souza Júnior, Waldeck Campanha de; Rezende, Sebastião Tavares de; Viana, Pollyanna Amaral; Falkoski, Daniel Luciano; Reis, Angélica Pataro; Machado, Solimar Gonçalves; Barros, Everaldo Gonçalves de; Guimarães, Valéria Monteze
    Whole cells of Debaryomyces hansenii UFV-1 were permeabilised with ethanol and immobilised in calcium alginate hydrogel. The optimum pH and temperature for α-galactosidase activities of permeabilised free (PFC) and permeabilised immobilised cells (PIC) were 4.5 and 60 °C; and 4.0 and 70 °C, respectively. PIC α-galactosidase was more stable than that of PFC. The incubation of PIC at 60 and 70 °C promoted an increase in α-galactosidase activity. The α-galactosidase activity was maintained when PIC was used in three repeated batches. The Km values for PIC and PFC α-galactosidases, with ρNPαGal, were 0.82 mM and 0.30 mM, respectively. Soy milk treatment with PIC for 6 h at 60 °C promoted 100% hydrolysis of raffinose oligosaccharides.
  • Imagem de Miniatura
    Item
    Purification and characterization of xylanases from the fungus Chrysoporthe cubensis for production of xylooligosaccharides and fermentable sugars
    (Applied Biochemistry and Biotechnology, 2016-12-24) Sousa Gomes, Kamila de; Maitan-Alfenas, Gabriela P.; Andrade, Lorena G. A. de; Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; Alfenas, Acelino C.; Rezende, Sebastião Tavares de
    Xylanases from the pathogen fungus Chrysoporthe cubensis were produced under solid state fermentation (SSF) using wheat bran as carbon source. The enzymatic extracts were submitted to ion exchange (Q Sepharose) and gel filtration chromatography methods (Sephadex S-200) for purification. The xylanases were divided into three groups: P1 showed better performance at 60 °C and pH 4.0, P2 at 55 °C and pH 3.0, and P3 at 80 °C and pH 3.0. Oat spelt xylan was the best substrate hydrolyzed by P1 and P3, while beechwood xylan was better degraded by P2. Carboxymethyl cellulose (CMC) and p-nitrophenyl-β-d-xylopyranoside (p-NPβXyl) were not hydrolyzed by any of the xylanases. The K M ’ or K M values, using oat spelt xylan as substrate, were 2.65 mg/mL for P1, 1.81 mg/mL for P2, and 1.18 mg/mL for P3. Xylobiose and xylotriose were the main xylooligosaccharides of oat spelt xylan degradation, indicating that the xylanases act as endo-β-1,4-xylanases. Xylanases also proved to be efficient for hydrolysis of sugarcane bagasse when used as supplement of a commercial cocktail due to the increase of the reducing sugar release.
  • Imagem de Miniatura
    Item
    Covalent immobilization of α-Galactosidase from Penicillium griseoroseum and its application in Oligosaccharides Hydrolysis
    (Applied Biochemistry and Biotechnology, 2008-10-21) Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; Queiroz, Marisa Vieira de; Araújo, Elza Fernandes de; Almeida, Maíra Nicolau de; Barros, Everaldo Gonçalves de; Rezende, Sebastião Tavares de
    Partially purified α-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized α-galactosidase showed optimal activity at 45 °C and pH values of 5 and 4, respectively. Immobilized α-galactosidase was more stable at higher temperatures and pH values. Immobilized α-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 °C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized α-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized α-galactosidase respectively. Immobilized α-galactosidase was reutilized eight times without any decrease in its activity.
  • Imagem de Miniatura
    Item
    Purification and characterization of Aspergillus terreus α-Galactosidases and their use for hydrolysis of Soymilk Oligosaccharides
    (Applied Biochemistry and Biotechnology, 2011-02-18) Ferreira, Joana Gasperazzo; Reis, Angélica Pataro; Guimarães, Valéria Monteze; Falkoski, Daniel Luciano; Silva Fialho, Lílian da; Rezende, Sebastião Tavares de
    α-Galactosidases has the potential to hydrolyze α-1-6 linkages in raffinose family oligosaccharides (RFO). Aspergillus terreus cells cultivated on wheat bran produced three extracellular forms of α-galactosidases (E1, E2, and E3). E1 and E2 α-galactosidases presented maximal activities at pH 5, while E3 α-galactosidase was more active at pH 5.5. The E1 and E2 enzymes showed stability for 6 h at pH 4–7. Maximal activities were determined at 60, 55, and 50°C, for E1, E2, and E3 α-galactosidase, respectively. E2 α-galactosidase retained 90% of its initial activity after 70 h at 50°C. The enzymes hydrolyzed ρNPGal, melibiose, raffinose and stachyose, and E1 and E2 enzymes were able to hydrolyze guar gum and locust bean gum substrates. E1 and E3 α-galactosidases were completely inhibited by Hg2+, Ag+, and Cu2+. The treatment of RFO present in soy milk with the enzymes showed that E1 α-galactosidase reduced the stachyose content to zero after 12 h of reaction, while E2 promoted total hydrolysis of raffinose. The complete removal of the oligosaccharides in soy milk could be reached by synergistic action of both enzymes
  • Imagem de Miniatura
    Item
    Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis
    (Appl Biochem Biotechnol, 2011-05-02) Almeida, Maíra Nicolau de; Guimarães, Valéria Monteze; Bischoff, Kenneth M.; Falkoski, Daniel Luciano; Pereira, Olinto Liparini; Gonçalves, Dayelle S. P. O.; Rezende, Sebastião Tavares de
    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L -arabinose, D -xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using D -xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.
  • Imagem de Miniatura
    Item
    A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency
    (Scientific Reports, 2017-06-20) Dutra, Thiago Rodrigues; Guimarães, Valéria Monteze; Varela, Ednilson Mascarenhas; Fialho, Lílian da Silva; Milagres, Adriane Maria Ferreira; Falkoski, Daniel Luciano; Zanuncio, José Cola; Rezende, Sebastião Tavares de
    Low cost and high efficiency cellulolytic cocktails can consolidate lignocellulosic ethanol technologies. Sugarcane bagasse (SCB) is a low cost agro-industrial residue, and its use as a carbon source can reduce the costs of fungi cultivation for enzyme production. Chrysoporthe cubensis grown under solid state fermentation (SSF) with wheat bran has potential to produce efficient enzymatic extracts for SCB saccharification. This fungus was grown under submersed fermentation (SmF) and SSF with in natura SCB, pretreated with acid or alkali and with others carbon sources. In natura SCB induced the highest carboxymethylcellulase (CMCase), xylanase, β-xylosidase, α-galactosidase and mannanase activities by C. cubensis under SSF. In natura and washed SCB, inducers of enzyme production under SSF, did not induce high cellulases and hemicellulases production by C. cubensis in SmF. The C. cubensis enzymatic extract produced under SSF with in natura SCB as a carbon source was more efficient for lignocelulolic biomass hydrolysis than extracts produced under SSF with wheat bran and commercial cellulolytic extract. Chrysoporthe cubensis showed high potential for cellulases and hemicellulases production, especially when grown under SSF with in natura SCB as carbon source.