Bioquímica e Biologia Molecular

URI permanente desta comunidadehttps://locus.ufv.br/handle/123456789/11837

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Hydrolysis of galacto-oligosaccharides in soy molasses by α -galactosidases and invertase from Aspergillus terreus
    (Brazilian Archives of Biology and Technology, 2010-05) Reis, Angélica Pataro; Guimarães, Valéria Monteze; Ferreira, Joana Gasperazzo; Queiroz, José Humberto de; Oliveira, Maria Goreti Almeida; Falkoski, Daniel Luciano; Almeida, Maíra Nicolau de; Rezende, Sebastião Tavares de
    Two α -galactosidase (P1 and P2) and one invertase present in the culture of Aspergillus terreus grown on wheat straw for 168 h at 28ºC were partially purified by gel filtration and hydrophobic interaction chromatographies. Optimum pH and temperatures for P1, P2 and invertase preparations were 4.5-5.0, 5.5 and 4.0 and 60, 55 and 65ºC, respectively. The KM app for ρ -nitrophenyl-α -D-galactopyranoside were 1.32 mM and 0.72 mM for P1 and P2, respectively, while the KM app value for invertase, using sacarose as a substrate was 15.66 mM. Enzyme preparations P1 and P2 maintained their activities after pre-incubation for 3 h at 50ºC and invertase maintained about 90% after 6 h at 55 ºC. P1 and P2 presented different inhibition sensitivities by Ag+, D-galactose, and SDS. All enzyme preparations hydrolyzed galacto-ologosaccharides present in soymolasses.
  • Imagem de Miniatura
    Item
    Covalent immobilization of α-Galactosidase from Penicillium griseoroseum and its application in Oligosaccharides Hydrolysis
    (Applied Biochemistry and Biotechnology, 2008-10-21) Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; Queiroz, Marisa Vieira de; Araújo, Elza Fernandes de; Almeida, Maíra Nicolau de; Barros, Everaldo Gonçalves de; Rezende, Sebastião Tavares de
    Partially purified α-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized α-galactosidase showed optimal activity at 45 °C and pH values of 5 and 4, respectively. Immobilized α-galactosidase was more stable at higher temperatures and pH values. Immobilized α-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 °C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized α-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized α-galactosidase respectively. Immobilized α-galactosidase was reutilized eight times without any decrease in its activity.
  • Imagem de Miniatura
    Item
    Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis
    (Appl Biochem Biotechnol, 2011-05-02) Almeida, Maíra Nicolau de; Guimarães, Valéria Monteze; Bischoff, Kenneth M.; Falkoski, Daniel Luciano; Pereira, Olinto Liparini; Gonçalves, Dayelle S. P. O.; Rezende, Sebastião Tavares de
    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L -arabinose, D -xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using D -xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.
  • Imagem de Miniatura
    Item
    Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling
    (Biotechnology for Biofuels, 2015-01-22) Visser, Evan Michael; Leal, Tiago Ferreira; Almeida, Maíra Nicolau de; Guimarães, Valéria Monteze
    Development of efficient methods for production of renewable fuels from lignocellulosic biomass is necessary to maximize yields and reduce operating costs. One of the main challenges to industrial application of the lignocellulosic conversion process is the high costs of cellulolytic enzymes. Recycling of enzymes may present a potential solution to alleviate this problem. In the present study enzymes associated with the insoluble fraction were recycled after enzymatic hydrolysis of pretreated sugarcane bagasse, utilizing different processing conditions, enzyme loadings, and solid loadings. It was found that the enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum was efficient for enzymatic hydrolysis and that a significant portion of enzyme activity could be recovered upon recycling of the insoluble fraction. Enzyme productivity values (g glucose/mg enzyme protein) over all recycle periods were 2.4 and 3.7 for application of 15 and 30 FPU/g of glucan, representing an increase in excess of ten times that obtained in a batch process with the same enzyme blend and an even greater increase compared to commercial cellulase enzymes. Contrary to what may be expected, increasing lignin concentrations throughout the recycle period did not negatively influence hydrolysis efficiency, but conversion efficiencies continuously improved. Recycling of the entire insoluble solids fraction was sufficient for recycling of adhered enzymes together with biomass, indicative of an effective method to increase enzyme productivity.