Artigos
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11798
Navegar
Item Abordagem bayesiana da sensitividade de modelos para o coeficiente de endogamia(Ciência Rural, 2009-09) Reis, Ricardo Luis dos; Muniz, Joel Augusto; Silva, Fabyano Fonseca e; Sáfadi, Thelma; Aquino, Luiz Henrique deEste trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá- la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.Item Comparação bayesiana de modelos com uma aplicação para o equilíbrio de Hardy-Weinberg usando o coeficiente de desequilíbrio(Ciência Rural, 2011-04) Reis, Ricardo Luis dos; Muniz, Joel Augusto; Silva, Fabyano Fonseca e; Sáfadi, Thelma; Aquino, Luiz Henrique deO equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A ). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A =0,146, D A =0,02 e D A =-0,02 com n=200; o modelo 2 é o mais indicado para D A =-0,02 e n=50 e o modelo 3 é o mais indicado para D A =-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.