Artigos
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11846
Navegar
Item Antisense inhibition of the 2-oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation(The Plant Cell, 2012-06) Araújo, Wagner L.; Nunes-Nesi, Adriano; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Fernie, Alisdair R.Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions.Item On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism(Amino Acids, 2013-02) Araújo, Wagner L.; Steinhauser, Dirk; Krall, Leonard; Fernie, Alisdair R.; Trofimova, Lidia; Mkrtchyan, Garik; Graf, Anastasia; Bunik, Victoria I.Mitochondria are tightly linked to cellular nutrient sensing, and provide not only energy, but also intermediates for the de novo synthesis of cellular compounds including amino acids. Mitochondrial metabolic enzymes as generators and/or targets of signals are therefore important players in the distribution of intermediates between catabolic and anabolic pathways. The highly regulated 2-oxoglutarate dehydrogenase complex (OGDHC) participates in glucose oxidation via the tricarboxylic acid cycle. It occupies an amphibolic branch point in the cycle, where the energy-producing reaction of the 2-oxoglutarate degradation competes with glutamate (Glu) synthesis via nitrogen incorporation into 2-oxoglutarate. To characterize the specific impact of the OGDHC inhibition on amino acid metabolism in both plant and animal mitochondria, a synthetic analog of 2-oxoglutarate, namely succinyl phosphonate (SP), was applied to living systems from different kingdoms, both in situ and in vivo. Using a high-throughput mass spectrometry-based approach, we showed that organisms possessing OGDHC respond to SP by significantly changing their amino acid pools. By contrast, cyanobacteria which lack OGDHC do not show perturbations in amino acids following SP treatment. Increases in Glu, 4-aminobutyrate and alanine represent the most universal change accompanying the 2-oxoglutarate accumulation upon OGDHC inhibition. Other amino acids were affected in a species-specific manner, suggesting specific metabolic rearrangements and substrate availability mediating secondary changes. Strong perturbation in the relative abundance of amino acids due to the OGDHC inhibition was accompanied by decreased protein content. Our results provide specific evidence of a considerable role of OGDHC in amino acid metabolism.Item Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves(Frontiers in Plant Science | Plant Physiology, 2012-06-04) Araújo, Wagner L.; Tohge, Takayuki; Nunes-Nesi, Adriano; Daloso, Danilo M.; Nimick, Mhairi; Krahnert, Ina; Bunik, Victoria I.; Moorhead, Greg B. G.; Fernie, Alisdair R.Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period.