Artigos
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/11800
Navegar
Item Synthesis and application of a new carboxylated cellulose derivative. Part III: Removal of auramine-O and safranin-T from mono- and bi-component spiked aqueous solutions(Journal of Colloid and Interface Science, 2017-10-25) Teodoro, Filipe Simões; Elias, Megg Madonyk Cota; Ferreira, Gabriel Max Dias; Adarme, Oscar Fernando Herrera; Savedra, Ranylson Marcello Leal; Siqueira, Melissa Fabíola; Silva, Luis Henrique Mendes da; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius AlvesIn the third part of this series of studies, the adsorption of the basic textile dyes auramine-O (AO) and safranin-T (ST) on a carboxylated cellulose derivative (CTA) were evaluated in mono- and bi-component spiked aqueous solutions. Adsorption studies were developed as a function of solution pH, contact time, and initial dye concentration. Adsorption kinetic data were modeled by monocomponent kinetic models of pseudo-first- (PFO), pseudo-second-order (PSO), intraparticle diffusion, and Boyd, while the competitive kinetic model of Corsel was used to model bicomponent kinetic data. Monocomponent adsorption equilibrium data were modeled by the Langmuir, Sips, Fowler-Guggenhein, Hill de-Boer, and Konda models, while the IAST and RAST models were used to model bicomponent equilibrium data. Monocomponent maximum adsorption capacities for AO and ST at pH 4.5 were 2.841 and 3.691 mmol g−1, and at pH 7.0 were 5.443 and 4.074 mmol g−1, respectively. Bicomponent maximum adsorption capacities for AO and ST at pH 7.0 were 1.230 and 3.728 mmol g−1. Adsorption enthalpy changes (ΔadsH) were obtained using isothermal titration calorimetry. The values of ΔadsH ranged from −18.83 to −5.60 kJ mol−1, suggesting that physisorption controlled the adsorption process. Desorption and re-adsorption of CTA was also evaluated.Item Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system(Journal of Colloid and Interface Science, 2018-01-06) Fideles, Renata Aparecida; Ferreira, Gabriel Max Dias; Teodoro, Filipe Simões; Adarme, Oscar Fernando Herrera; Silva, Luis Henrique Mendes da; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius AlvesTrimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g−1 at pH 4.5, and 1.734 and 1.230 mmol g−1 at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration calorimetry (ITC) ranged from −21.07 ± 0.25 to −7.19 ± 0.05 kJ mol−1, indicating that both dyes interacted with STA by physisorption. Dye desorption efficiencies ranged from 41 to 51%, and re-adsorption efficiencies ranged from 66 to 87%, showing that STA can be reused in new adsorption cycles. ITC data combined with isotherm studies allowed clarification of adsorption interactions.