Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
2 resultados
Resultados da Pesquisa
Item Regressão quantílica: aplicações em seleção genômica ampla(Universidade Federal de Viçosa, 2018-02-02) Barroso, Laís Mayara Azevedo; Nascimento, Moysés; http://lattes.cnpq.br/8587813175766141A principal contribuição da genética molecular no melhoramento é a utilização direta das informações de DNA no processo de identificação de indivíduos geneticamente superiores. Sob esse enfoque, idealizou-se a seleção genômica ampla (Genome Wide Selection – GWS), a qual consiste no uso de um grande número de marcadores SNPs (Single Nucleotide Polymorphisms) amplamente distribuídos no genoma para predizer o mérito genético de indivíduos. Diversas abordagens estatísticas foram propostas para a predição de valores genéticos permitindo estimar os efeitos dos marcadores com base apenas na média condicional da variável dependente. Uma metodologia ainda pouco explorada em GWS é a regressão quantilica (RQ). Diferentemente das outras metodologias, a RQ permite avaliar os fenótipos de interesse em diferentes níveis da distribuição. Desta forma, este trabalho tem como objetivo apresentar duas aplicações de GWS utilizando a RQ. Na primeira aplicação foi proposto e avaliado o uso da Regressão Quantílica Regularizada (RQR) para estimar os efeitos marcadores SNPs para curvas de crescimento em suínos. O modelo proposto permitiu a descoberta, em diferentes níveis de interesse (quantils), de marcadores relevantes para cada característica e suas respectivas posições cromossômicas. Além disso, RQR permitiu a construção de curvas de crescimento genômico, que identificaram indivíduos geneticamente superiores em relação à eficiência de crescimento. Na segunda aplicação utilizou-se a RQR para predizer valores genéticos de conjuntos de dados simulados com diferentes proporções de epistasia na variância genética e valores fenótipos com distribuições simétrica e assimétrica a direita. Neste trabalho verificou-se que a RQR teve, em geral, maiores acurácias do que as outras metodologias avaliadas quando a característica é de baixa herdabilidade. Além disso, quando tem-se 100% da variância genética como sendo epistática, a RQR foi, na maioria dos casos, melhor do que os métodos tradicionais. Desta forma, avaliando as duas aplicações apresentadas, tem-se que a RQR é uma alternativa interessante em estudos de GWS, uma vez que possibilita a descoberta do modelo que melhor representa a relação entre as variáveis dependentes (fenótipos) e independentes (efeitos dos marcadores) aumentando o desempenho preditivo do modelo.Item Análise de dados de RNA-Seq com diferentes números de fatores e repetições(Universidade Federal de Viçosa, 2015-07-22) Souza, Vladimir Barbosa Carlos de; Peternelli, Luiz Alexandre; http://lattes.cnpq.br/7804746265517309A tecnologia RNA-Seq mostrou-se ser revolucionária para o estudo de expressão gênica. Porém, mais estudos na literatura sobre a análise de dados de RNA-Seq são necessários, até mesmo porque se trata de um método de elevado custo. Devido a este alto custo, é importante o aproveitamento das amostras disponíveis para concluir sobre mais fatores e suas interações. Este trabalho tem como objetivo realizar um comparativo do desempenho da análise de identificação de DEGs (genes diferencialmente expressos) em experimentos com diferentes números de fatores e repetições, mas todos com o mesmo número de amostras, ou seja, com o mesmo custo. Para as análises, foram simulados conjuntos de dados provenientes de experimentos com diferentes números de fatores e repetições. Para a realização dessas simulações foi utilizado o pacote TCC, desenvolvido para o software livre R, para a normalização dos dados também foi utilizado o TCC, e para a identificação dos DEGs foi utilizado o pacote DESeq, também desenvolvido para o R. Por último, o desempenho das análises de cada experimento foi calculado utilizando-se curvas ROC (Receiver Operating Characteristics), usando-se o pacote ROCR, também disponível para o R. Após o cumprimento da metodologia, pôde-se observar que, na ausência de interação entre fatores, não ocorre perda de desempenho das análises ao adicionar mais fatores, e, quando existe interação entre fatores, ocorre essa perda. Portanto, o uso de mais fatores, ao custo de se ter menos repetições, pode ser vantajoso.