Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Identificação de outliers multivariados - Uma aplicação em dados de saúde
    (Universidade Federal de Viçosa, 2017-02-17) Barbosa, Josino José; Oliveira, Fernando Luiz Pereira de; http://lattes.cnpq.br/1948800098593563
    A identificação de outliers desempenha um papel importante na análise estatística, pois tais observações podem conter informações importantes em relação aos dados. Se modelos estatísticos clássicos são cegamente aplicados a dados contendo valores atípicos, os resultados podem ser enganosos e decisões equivocadas podem ser tornadas. Além disso, em situações práticas, os próprios outliers são muitas vezes os pontos especiais de interesse e sua identificação pode ser o principal objetivo da investigação. Por isso, a finalidade desse trabalho é propor uma técnica de detecção de outliers multivariados, baseada em análise agrupamento e comparar essa técnica com o método de identificação de outliers via Distância de Mahalanobis. Para geração dos dados utilizou-se simulação através do Método de Monte Carlo e a técnica de mistura de distribuições normais multivariadas. Os resultados apresentados nas simulações mostram que o método proposto foi superior ao método de Mahalanobis tanto para sensibilidade quanto para especificidade, ou seja, ele apresenta maior capacidade de diagnosticar corretamente os indivíduos outliers e os não outliers. Além disso, a metodologia proposta foi ilustrada com uma aplicação em dados reais provenientes da área de saúde.
  • Imagem de Miniatura
    Item
    Abordagens frequentista e bayesiana para descrição das curvas de acúmulo de matéria seca de plantas de alho
    (Universidade Federal de Viçosa, 2015-12-03) Macedo, Leandro Roberto de; Cecon, Paulo Roberto; http://lattes.cnpq.br/1661203785619531
    Este trabalho teve como objetivo identificar modelos de regressão não linear que melhor descrevem as curvas de acúmulo de matéria seca em acessos de alho ao longo do tempo (60, 90, 120 e 150 dias após o plantio) utilizando as abordagens Frequentista e Bayesiana. Objetivou-se também agrupar os acessos similares em cada abordagem com relação às estimativas dos parâmetros e validar este agrupamento via inferência para a igualdade desses parâmetros entre os grupos formados. Para tal estudo foram utilizados 30 acessos de alho registrados no Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV). Os modelos Logístico, Gompertz e Von Bertalanffy mostraram-se bons representantes para este tipo de estudo, sendo o modelo Logístico o que melhor se ajustou aos dados. Após a escolha do melhor modelo em cada uma das abordagens, as estimativas dos parâmetros das curvas provenientes do ajuste deste modelo foram submetidas a análise de agrupamento, em que as estimativas foram consideradas como variáveis. Para o agrupamento foi utilizando o algoritmo de Ward e a distância generalizada de Mahalanobis como medida de proximidade. O número ótimo de grupos, segundo o método de Mojena, foi de três para a abordagem Frequentista e quatro para a Bayesiana. A inferência sobre igualdade de parâmetros das curvas entre os grupos formados indicou que o método Bayesiano mostrou-se eficiente e caracterizou-se como uma ferramenta útil para o estudo das curvas de acúmulo de matéria seca em plantas de alho visto que não apresentou problemas de convergência e reportou estimativas com baixos desvios padrão a posteriori, além de determinar de forma mais efetiva o número de grupos.