Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Análise da detecção e da influência de outliers na avaliação da acurácia posicional de produtos cartográficos
    (Universidade Federal de Viçosa, 2021-08-27) Cristo, Sabrina Lourdes Pereira de; Santos, Nerilson Terra; http://lattes.cnpq.br/4426790564356034
    Outliers são dados que se diferem do conjunto de dados ao qual pertence e podem ser identificados aplicando métodos próprios para esta finalidade. A detecção de candidatos a outliers é objeto de interesse de várias áreas, dentre elas o controle de qualidade cartográfica, que tem por objetivo avaliar a qualidade de um produto cartográfico e assegurar para qual finalidade o produto cartográfico pode ser utilizado. Um dos elementos do controle de qualidade cartográfica é a acurácia posicional, que mede a qualidade da posição geográfica de dados geoespaciais. A análise da qualidade da posicional deve ser avaliada em termos de precisão e tendência. A precisão é feita seguindo as recomendações do Decreto 89.817, ET- ADGV e ET-CQDG, enquanto para a tendência podem ser utilizados testes inferenciais, como o Teste t de Student, e a estatística espacial, usando a média direcional e a variância circular. A presença de outliers pode comprometer tanto a precisão quanto a tendência e apesar da importância da detecção de candidatos a outliers, essa etapa não é bem definida nas normas, que não a tratam como obrigatória. Dessa forma, objetivou-se analisar o impacto da detecção de candidatos a outliers na avaliação da acurácia posicional e avaliar o desempenho de diferentes métodos de detecção de candidatos a outliers. Para isso, foram avaliados cinco produtos cartográficos quanto a sua acurácia posicional de duas formas, a primeira sem realizar a etapa de detecção de candidatos a outliers, fazendo a análise de precisão e tendência, e a segunda maneira acrescentando a detecção de candidatos a outliers, aplicando sete métodos para cada base de dados, sendo eles: Método 3σ, Diagrama Box-Plot, Método Standard Deviation, Método Hampel, Teste de Dixon, Teste de Grubbs e Teste de Chauvenet. Com isso, notou-se que a presença de pontos outliers afeta a qualidade do produto cartográfico e que após sua remoção, a classificação dos dados quanto à acurácia posicional tem uma melhoria. Palavras-chave: Outliers. Controle de Qualidade Cartográfica. Acurácia Posicional.
  • Imagem de Miniatura
    Item
    Desempenho de testes de homogeneidade de variâncias em diferentes cenários simulados
    (Universidade Federal de Viçosa, 2021-06-30) Menezes, Gleynner Ghiotto Lima; Santos, Nerilson Terra; http://lattes.cnpq.br/4019897827963986
    A confiabilidade nos resultados obtidos a partir dos testes de hipóteses estão sujeitos ao atendimento de pressuposições, o qual, quando pelo menos uma delas não é satisfeita, seu desempenho ou nível de confiança pode estar comprometido, levando a conclusões errôneas. Deste modo, existem diversos testes na literatura que foram propostos a fim de verificar a suposição de homogeneidade de variâncias em análises estatísticas, sendo esta tomada por diversos autores como o fator de maior influência sobre a sensibilidade dos resultados. No entanto, não existe um consenso sobre o melhor cenário de aplicação para cada um deles. Neste trabalho, pretende-se comparar os testes de homogeneidade de variâncias paramétricos de Bartlett, Levene, Brown- Forsythe, Cochran e Hartley, e os testes não paramétricos de Fligner- Killeen, Conover e Mood, através de um estudo de simulação utilizando o software R, onde, serão realizadas comparações segundo um Delineamento Inteiramente Casualisado sobre os seguintes aspectos de avaliação: proporção de heterogeneidade, proporção de desbalanceamento e diferentes distribuições de probabilidades. A hipótese de homocedasticidade foi adotada para analisar a taxa empírica do erro tipo I (𝛼̂) e, a de heterocedasticidade, para analisar a taxa empírica do poder do teste (𝜋̂). Diante disso, foi observado que, sob distribuição normal, o teste paramétrico de Bartlett obtém o melhor controle da taxa empírica do erro tipo I e obtém alto poder nos cenários balanceados e desbalanceados. Quando os conjuntos de dados são provenientes de populações não normais, o teste paramétrico de Brown- Forsythe foi o mais indicado. Dentre os testes não paramétricos, o teste de Mood foi o mais indicado para atuar sobre as três distribuições de probabilidades avaliadas. Palavras-chave: Heterocedasticidade. Robustez. Poder.
  • Imagem de Miniatura
    Item
    Splines de regressão adaptativa multivariada na predição genômica
    (Universidade Federal de Viçosa, 2020-10-27) Celeri, Maurício de Oliveira; Nascimento, Moysés; http://lattes.cnpq.br/2569243563413784
    A Seleção Genômica Ampla (SGA), proposta em 2001, é uma variação da Seleção Assistida por Marcadores (SAM) que prediz o valor genético genômico com base em marcadores distribuídos ao longo de todo o genoma. Desde sua proposição vários métodos estatísticos vêm sendo propostos para SGA, dentre os quais podemos destacar o Melhor Preditor Linear não Viesado Genômico (G-BLUP), uma das abordagens mais amplamente difundida devido a sua simplicidade e por permitir considerar efeitos não aditivos em seu ajuste. Uma metodologia ainda não explorada em SGA é a Splines de Regressão Adaptativa Multivariada (MARS). A MARS modela efeitos individuais e possíveis interações entre variáveis preditoras, podendo ser particularmente útil para SGA considerando efeitos não aditivos. Diante disso o objetivo deste trabalho é avaliar a utilização da MARS em SGA, considerando características quantitativas com efeitos não aditivos. Para isso, fez-se uso de um conjunto de dados simulados de 1000 indivíduos com 4010 marcadores SNPs e 12 cenários considerando efeitos não aditivos, definidos pela combinação de oito, 40, 80 ou 120 locus controladores e herdabilidade 0,3, 0,5 ou 0,8. Confrontou-se os resultados da MARS contra os resultados obtidos com o modelo ajustado G-BLUP considerando efeitos aditivos, aditivos e devido a dominância e aditivos e devido a epistasia aditiva-aditiva no que se refere à capacidade preditiva e ao coeficiente kappa de Cohen para seleção de indivíduos superiores. MARS apresentou resultados de capacidade preditiva superior a todos os modelos G-BLUP ajustado para os cenários de herdabilidade 0,3 e resultados semelhantes nos demais casos. Quanto ao coeficiente kappa de Cohen, MARS foi superior aos métodos G-BLUP em 11 dos 12 cenários avaliados. Portanto, MARS é uma metodologia que apresenta potencial para estudos em SGA. Palavras-chave: Regressão. Aprendizado estatístico. Seleção genômica ampla. Efeitos não aditivos.
  • Imagem de Miniatura
    Item
    Uso da geoestatística univariada e multivariada para análise de atributos do solo
    (Universidade Federal de Viçosa, 2021-02-22) Máquina, Calisto Manuel; Santos, Nerilson Terra; http://lattes.cnpq.br/5155559602294538
    A produção agrícola é uma das vias utilizadas para a melhoria da economia não só de cidadãos comuns, mas também de um país, devido à crescente procura de alimentos associada ao crescimento populacional.Assim, a aposta de grandes agricultores está na melhoria das técnicas de produção agrícola, tendo em conta não só o ganho financeiro, mas também a diminuição do impacto ambiental. A análise da variabilidade dos atributos do solo tem sido um dos focos para melhor controlar o uso dos insumos agrícolas. Contudo, poucos trabalhos focaram o efeito que a variabilidade espacial conjunta desses atributos tem no delineamento de zonas de manejo. Pelo exposto, o objetivo deste trabalho foi utilizar a geoestatística multivariada para o delineamento de zonas de manejo, considerando a variabilidade espacial conjunta de atributos que sabiamente têm efeito na produtividade de uma cultura. Foram identificados pares de atributos químicos que, por meio do algoritmo Fuzzy c-means, permitiram o mapeamento de zonas de manejo. O número ótimo de zonas de manejo de cada par de atributos, considerando três cenários diferentes, nomeadamente 100%, 75% e 50% de pontos amostrados dos atributos primários, foi determinado após a avaliação conjunta das funções Índice de Performance Fuzzy (FPI) e Entropia de Partição Modificada (MPE). O índice Kappa indicou concordância significativamente entre zonas de manejo dentro do mesmo par de atributos, o que atestou o uso da cokrigagem ordinária para o delineamento de zonas de manejo. Palavras-chave: Agricultura de precisão. Delineamento de zonas de manejo. Estatística Espacial.