Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
25 resultados
Resultados da Pesquisa
Item Análise de estilo baseada em retornos: um estudo aplicado aos fundos de previdência complementar oferecidos pelo instituto Agros(Universidade Federal de Viçosa, 2021-11-04) Prates, Carlos Victor Bragatto; Barbosa, Eduardo Campana; http://lattes.cnpq.br/4525845624417719A introdução do Plano Real, em 1994, promoveu uma profunda mudança no cenário econômico nacional, bem como na postura do cidadão brasileiro, no que se refere a gestão do seu patrimônio pessoal e a escolha de estratégias e instrumentos financeiros, que permitam uma administração eficiente do mesmo. Nesse sentido, uma categoria de investimento que vem se destacando é a dos planos de previdência privada, uma importante alternativa para auxiliar o brasileiro no planejamento e no acúmulo de recursos para o futuro. Logo, o objetivo deste trabalho é aplicar a metodologia da Análise de Estilo Baseada em Retornos ou RBSA (do inglês, Return Based Style Analysis), para avaliar as estratégias de investimento ou de alocação de recursos e os retornos de dois planos previdenciários (B e CD) oferecidos pelo Agros, um Instituto da UFV de Seguridade Social, que oferece e administra planos de previdência privada e de saúde, com o intuito de suplementar os benefícios pagos pela previdência social aos servidores e ex-servidores da Universidade Federal de Viçosa (UFV). A referida metodologia utiliza um modelo de regressão linear múltipla, que através da imposição de algumas restrições paramétricas, busca estimar o percentual de alocação de um fundo a determinadas classes de ativos, descritas à priori nos documentos regulatórios do mesmo. Palavras-chave: Economia. Gestão. Investimentos. Restrições paramétricas. Regressão linear múltipla.Item Painéis de marcadores de baixa densidade para a predição genômica de Coffea arábica L.(Universidade Federal de Viçosa, 2021-07-22) Arcanjo, Edilaine Silva; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/2563424950732312Os processos de melhoramento genético são primordiais para o desenvolvimento de novas cultivares. Em decorrência da importância da cafeicultura brasileira, esse setor tem sofrido transformações através das pesquisas em programas de melhoramento. Os progressos do Coffea arábica atingidos pelo melhoramento genético têm propiciado a aquisição e recomendação de inúmeras cultivares que possuem características que a elas foram adicionadas por essa técnica. Entretanto, um dos maiores impasses do melhoramento genético vegetal é que para a obtenção de uma nova cultivar, o processo é muitas vezes lento e demorado. Dessa forma, o uso da biotecnologia, com a utilização dos marcadores moleculares, apresentou-se como uma alternativa para amenizar esse problema. Neste contexto, foi proposto a seleção genômica ampla (Genome Wide Selection-GWS), que parte do pressuposto que todos os segmentos do genoma colaboram para a variação genética e cada segmento está em alto desequilíbrio de ligação (LD) com no mínimo um marcador genético conhecido. A GWS fundamenta-se nos marcadores moleculares do tipo SNP (Single Nucleotide Polymorphism), que são abundantemente distribuídos ao longo do DNA. Com o advento dos SNPs, os valores genéticos genômicos estimados (GEBVs) puderam ser calculados através dos efeitos desses marcadores. Desse modo, os SNPs têm proporcionado a melhor cobertura do genoma; no entanto, normalmente a execução da seleção genômica requer uma grande genotipagem populacional para os indivíduos de treinamento e os candidatos à seleção, o que pode ocasionar em um aumento do custo total do programa de melhoramento. Assim, este trabalho teve por objetivo avaliar a viabilidade do uso de painéis de marcadores de baixa densidade na predição do GEBV de características economicamente importantes de C. arábica, com a finalidade de reduzir os custos de genotipagem a partir da utilização de chips customizados. Os resultados obtidos neste estudo demonstraram que o uso desses painéis na GWS pode ser uma ferramenta útil para o melhoramento dessa espécie, uma vez que modelos baseados nestes painéis apresentaram boas estimativas de capacidades preditivas e substanciais valores de concordância em termos de seleção quando comparados à modelos de maior densidade de marcadores. Palavras-chave: Melhoramento Genético. Café. Seleção Genômica. G-BLUP.Item Análise de fatores aplicada em estudos de seleção genômica no melhoramento de Coffea canephora(Universidade Federal de Viçosa, 2020-02-20) Paixão, Pedro Thiago Medeiros; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/0114089076153492O Brasil se destaca em âmbito mundial na produção de café. Os incrementos observados em sua produtividade é resultado do aprimoramento de diversas metodologias. Dentre elas, destacam-se os métodos preditivos de valor genético. Estes contribuem significativamente na seleção de genótipos superiores, de forma a aumentar o ganho genético por unidade de tempo. Neste contexto, a seleção genômica ampla (GWS) é uma ferramenta que se destaca, uma vez que permite predizer o fenótipo futuro de um indivíduo baseado apenas em informações de marcadores moleculares. Realizar a seleção de maneira simultânea para várias características é o interesse da maioria dos programas de melhoramento, e a análise de fatores (AF) tem sido utilizada para auxiliar neste fim. A utilização de fatores se justifica devido a existência de correlações genéticas entre as características, as quais podem ser atribuídas aos QTL que têm efeitos pleiotrópicos ou aos QTL estreitamente ligados. Dessa forma, o objetivo deste trabalho foi de avaliar o uso da AF no contexto de GWS, em genótipos de Coffea canephora. Os resultados obtidos da seleção baseada nos fatores foram comparados, por meio da capacidade preditiva, acurácia e do coeficiente de Cohen’s Kappa, com aqueles advindos da análise das variáveis individuais. Para isso, foram utilizados dados fenotípicos e genotípicos de populações compostas por clones dos grupos varietais Conilon e Robusta e por híbridos originados de cruzamentos entre estes grupos, avaliados durante três anos consecutivos (2014 a 2016), e uma densidade de 18111 marcadores SNPs identificados. A partir dos resultados observados, verificou-se que a AF foi eficiente para elucidar as relações entre as características e originar novas variáveis. Os fatores formados são interessantes em termos de seleção, pois além de permitirem interpretações conjuntas, apresentam boas estimativas de capacidade preditiva, herdabilidade e acurácia. Ademais observou-se alta concordância entre os indivíduos selecionados com base nos fatores e aqueles selecionados considerando as variáveis individuais. Entretanto, cabe destacar que, a seleção baseada nos fatores conseguiu selecionar indivíduos de porte mais adequado. Palavras-chave: Predição Genômica. Análise Multivariada. Melhoramento Genético.Item Comparação dos ajustes de modelos com erro normal e skew-normal(Universidade Federal de Viçosa, 2020-10-16) Nascimento, Jhennifer dos Santos; Emiliano, Paulo César; http://lattes.cnpq.br/3797894381138113Na modelagem de fenômenos aleatórios, em que uma variável aleatória quantitativa é estudada em função de uma variável aleatória qualitativa, é muito comum ser utilizada a análise de variâncias (ANOVA). Porém, para essa análise ser validada é necessário que quatro pressuposições sejam ve- rificadas com testes estatísticos, dentre elas, a normalidade do componente aleatório do modelo. Entretanto, na prática, alguns resultados de ensaios experimentais violam uma ou mais pressuposi- ções da ANOVA tornando-se necessária uma outra metodologia para analisar os dados. Com isso, o objetivo deste trabalho é, em vez de utilizar a metodologia anteriormente mencionada, fazer o ajuste de um delineamento inteiramente casualizado (DIC), atribuindo a distribuição skew-normal para o componente aleatório do modelo, utilizando o método da máxima verossimilhança. Neste estudo, foram utilizados dois conjuntos de dados não normais com indícios de dispersão assimetria que foram imprescindíveis para fazer comparação, através dos critérios de comparação AIC e BIC, entre a distribuição skew-normal e o seu submodelo normal. Para o primeiro conjunto de dados, referente a temperatura, foi ajustado um modelo de intercepto, e o segundo conjunto de dados refere-se a um experimento realizado segundo um DIC, que avaliou o percentual de gordura de idosos que praticaram diferentes intervenções de atividade física. Neste trabalho, conduziu-se todos os testes de comparação de contrastes de duas médias e intervalos de confiança para a distribuições normal e skew-normal. Além dos critérios de informação de Akaike e Bayesiano, para avaliar o ajuste dos modelos aos dados, foi realizada análise de resíduos quantílicos, e para finalizar, foram realizados estudos de simulação para avaliar inferência e as propriedades assintóticas dos estimado- res da distribuição skew-normal para os modelos ajustados. Conclui-se, assim, que esses estimadores ganham eficiência com o aumento do tamanho das amostras e fornecem melhores estimativas dos dados estudados em relação a distribuição normal, fato que foi comprovado no estudo dos envelopes simulados utilizando resíduos quantílicos e no estudo de simulação. Palavras-chave: Assimetria. Delineamentos experimentais. Monte Carlo. Verossimilhança.Item Análise Geoestatística e multivariada para definição de zonas de manejo de cana-de- açúcar (Saccharum officinarum) na Guatemala(Universidade Federal de Viçosa, 2021-06-28) Hernández, Marianna Mendoza; Carneiro, Antônio Policarpo Souza; http://lattes.cnpq.br/7003527687447257As zonas de manejo (ZM) são delimitações de subáreas com características comuns. Dentro da mesma ZM, o potencial de produção pode ser semelhante, ao passo que pode diferir entre as diversas ZM. Estudos recentes em agricultura de precisão consideram eficiente o uso de ZM para a aplicação de fertilizantes baseada na variabilidade espacial dos atributos do solo. Diante disso, os objetivos deste trabalho foram analisar a variabilidade espacial dos atributos físico- químicos do solo em lavoura de cana-de-açúcar (Saccharum officinarum), por meio de Geoestatística e delinear zonas de manejo homogêneas usando análise Geoestatística e multivariada. Foram analisados dados de uma área de produção de cana-de-açúcar de 1.516,33 ha, localizada na fazenda Tehuantepec, no município de Santa Lucía Cotzumalguapa, Escuintla, Guatemala. Foram utilizados 17 atributos físico-químicos, obtidos da amostragem do solo de 153 pontos georreferenciados da área de estudo, na safra 2019-2020. Foram eles: potencial hidrogeniônico, fósforo, cobre, zinco, ferro, manganês, boro, matéria orgânica, capacidade de troca catiônica, cálcio, magnésio, sódio, potássio, saturação de bases, argila, silte e areia. A determinação da dependência espacial de cada variável foi analisada pela análise variográfica, considerando para seu ajuste as variáveis que não apresentaram efeito pepita puro. Os modelos esférico e exponencial foram ajustados aos variogramas experimentais usando o método dos mínimos quadrados. Para avaliar a qualidade do ajuste do modelo teórico dos variogramas, utilizou-se o processo de validação cruzada e, para delimitar as zonas de manejo, foi utilizado o algoritmo fuzzy K-means. A análise de componentes principais (ACP) foi aplicada aos valores preditos dos atributos do solo, obtidos pela técnica de interpolação krigagem como método de entrada de dados para o algoritmo fuzzy K-means. O número de ZM foi definido com os critérios do coeficiente de partição difusa (FPC) e entropia de partição normalizada (NCE). A área estudada apresentou variabilidade espacial para 16 dos 17 atributos de solo. Foram delineadas duas zonas de manejo para a cultura da cana-de-açúcar. Palavras-chave: Agricultura de precisão. Atributos físico-químicos do solo. Componentes principais. Krigagem. Variabilidade espacial. Fuzzy K-means.Item Análise da detecção e da influência de outliers na avaliação da acurácia posicional de produtos cartográficos(Universidade Federal de Viçosa, 2021-08-27) Cristo, Sabrina Lourdes Pereira de; Santos, Nerilson Terra; http://lattes.cnpq.br/4426790564356034Outliers são dados que se diferem do conjunto de dados ao qual pertence e podem ser identificados aplicando métodos próprios para esta finalidade. A detecção de candidatos a outliers é objeto de interesse de várias áreas, dentre elas o controle de qualidade cartográfica, que tem por objetivo avaliar a qualidade de um produto cartográfico e assegurar para qual finalidade o produto cartográfico pode ser utilizado. Um dos elementos do controle de qualidade cartográfica é a acurácia posicional, que mede a qualidade da posição geográfica de dados geoespaciais. A análise da qualidade da posicional deve ser avaliada em termos de precisão e tendência. A precisão é feita seguindo as recomendações do Decreto 89.817, ET- ADGV e ET-CQDG, enquanto para a tendência podem ser utilizados testes inferenciais, como o Teste t de Student, e a estatística espacial, usando a média direcional e a variância circular. A presença de outliers pode comprometer tanto a precisão quanto a tendência e apesar da importância da detecção de candidatos a outliers, essa etapa não é bem definida nas normas, que não a tratam como obrigatória. Dessa forma, objetivou-se analisar o impacto da detecção de candidatos a outliers na avaliação da acurácia posicional e avaliar o desempenho de diferentes métodos de detecção de candidatos a outliers. Para isso, foram avaliados cinco produtos cartográficos quanto a sua acurácia posicional de duas formas, a primeira sem realizar a etapa de detecção de candidatos a outliers, fazendo a análise de precisão e tendência, e a segunda maneira acrescentando a detecção de candidatos a outliers, aplicando sete métodos para cada base de dados, sendo eles: Método 3σ, Diagrama Box-Plot, Método Standard Deviation, Método Hampel, Teste de Dixon, Teste de Grubbs e Teste de Chauvenet. Com isso, notou-se que a presença de pontos outliers afeta a qualidade do produto cartográfico e que após sua remoção, a classificação dos dados quanto à acurácia posicional tem uma melhoria. Palavras-chave: Outliers. Controle de Qualidade Cartográfica. Acurácia Posicional.Item Desempenho de testes de homogeneidade de variâncias em diferentes cenários simulados(Universidade Federal de Viçosa, 2021-06-30) Menezes, Gleynner Ghiotto Lima; Santos, Nerilson Terra; http://lattes.cnpq.br/4019897827963986A confiabilidade nos resultados obtidos a partir dos testes de hipóteses estão sujeitos ao atendimento de pressuposições, o qual, quando pelo menos uma delas não é satisfeita, seu desempenho ou nível de confiança pode estar comprometido, levando a conclusões errôneas. Deste modo, existem diversos testes na literatura que foram propostos a fim de verificar a suposição de homogeneidade de variâncias em análises estatísticas, sendo esta tomada por diversos autores como o fator de maior influência sobre a sensibilidade dos resultados. No entanto, não existe um consenso sobre o melhor cenário de aplicação para cada um deles. Neste trabalho, pretende-se comparar os testes de homogeneidade de variâncias paramétricos de Bartlett, Levene, Brown- Forsythe, Cochran e Hartley, e os testes não paramétricos de Fligner- Killeen, Conover e Mood, através de um estudo de simulação utilizando o software R, onde, serão realizadas comparações segundo um Delineamento Inteiramente Casualisado sobre os seguintes aspectos de avaliação: proporção de heterogeneidade, proporção de desbalanceamento e diferentes distribuições de probabilidades. A hipótese de homocedasticidade foi adotada para analisar a taxa empírica do erro tipo I (𝛼̂) e, a de heterocedasticidade, para analisar a taxa empírica do poder do teste (𝜋̂). Diante disso, foi observado que, sob distribuição normal, o teste paramétrico de Bartlett obtém o melhor controle da taxa empírica do erro tipo I e obtém alto poder nos cenários balanceados e desbalanceados. Quando os conjuntos de dados são provenientes de populações não normais, o teste paramétrico de Brown- Forsythe foi o mais indicado. Dentre os testes não paramétricos, o teste de Mood foi o mais indicado para atuar sobre as três distribuições de probabilidades avaliadas. Palavras-chave: Heterocedasticidade. Robustez. Poder.Item Métodos aplicados aos estudos de associação genômica via regiões cromossômicas considerando efeitos aditivos e de dominância(Universidade Federal de Viçosa, 2021-03-01) Lima, Leísa Pires; Azevedo, Camila Ferreira; http://lattes.cnpq.br/1919088712911346Os avanços na biologia molecular e as inovações nas tecnologias de sequenciamento e de genotipagem permitiram o desenvolvimento de novos marcadores moleculares favorecendo os estudos de associação genômica ampla (Genome Wide Association Studies - GWAS). A análise via marcas únicas se destaca como o principal procedimento para estudar a associação entre marcas e QTL (Quantitative Trait Loci), porém metodologias que consideraram grupos de marcadores para flanquear regiões genômicas vem elucidando importantes resultados para estudos de associação. Várias abordagens estatísticas veem sendo propostas no âmbito da GWAS, no entanto, estudos comparativos revelam que os métodos bayesianos são superiores em termos do poder em detectar marcadores com associações significativas. Entre os critérios existentes de seleção de regiões se destacam, a seleção pela porcentagem da variância explicada por regiões genômicas (%var), o critério de seleção de tagSNPs (tagSNPs) e a seleção com base na probabilidade a posteriori da associação de regiões genômicas (WPPA - Window Posterior Probability of Association). Para também detectar regiões potencialmente associadas, foi proposto o critério baseado na probabilidade a posteriori do intervalo (Posterior Probability of Interval - 𝑃𝑃 𝑖𝑛𝑡 ) que visa selecionar regiões com base nos marcadores de maiores efeitos estimados via método bayesiano, neste estudo o BayesD𝜋. Além disso, uma metodologia alternativa, denominada mapeamento de herdabilidades regionais (Regional Heritability Mapping - RHM) vem apresentando importantes resultados. Dessa forma, o primeiro capítulo deste trabalho consiste em uma revisão de literatura sobre a GWAS apresentando sua definição e importância no melhoramento genético e abordando detalhes teóricos acerca dos critérios citados acima. Já o capítulo 2 visa propor a medida 𝑃𝑃 𝑖𝑛𝑡 e compará-la às demais abordagens, tagSNP, %var, WPPA conjuntamente ao BayesD𝜋 e metodologia de marcas únicas, quanto a eficiência em selecionar e identificar marcadores ou regiões associados a QTL. Para isso, utilizou-se dados simulados considerando seis cenários diferentes, sendo os SNPs alocados em regiões genômicas não sobrepostas. Os resultados do segundo capítulo indicaram que para características com herança oligogênica, o critério WPPA seguido dos critérios %var e 𝑃𝑃 𝑖𝑛𝑡 se mostraram superiores, apresentando maiores valores de poder de detecção, capturando maiores porcentagens de variância genética e maiores áreas. Para características com herança poligênica, os critérios 𝑃𝑃 𝑖𝑛𝑡 e WPPA foram considerados superiores aos demais. Ademais, o capítulo 3 avalia os critérios, 𝑃𝑃 𝑖𝑛𝑡 e WPPA, que se mostraram superiores no capítulo 2 junto aos métodos de análise via marcas únicas e o RHM. No entanto, a eficiência em termos de poder de detecção e de falsos positivos destes métodos foi avaliada considerando ou não a inclusão dos efeitos de dominância nos modelos estatísticos. Para isso, foram utilizados dados simulados em dezoito cenários com diferentes níveis de herdabilidade, arquitetura genética e grau médio de dominância. Os resultados indicaram que para os efeitos aditivos considerando características com arquitetura genética oligogênica, os critérios WPPA, RHM e 𝑃𝑃 𝑖𝑛𝑡 se mostraram superiores para todos os graus de dominância analisados. Já para características com herança poligênica, os critérios 𝑃𝑃 𝑖𝑛𝑡 e WPPA podem ser considerados superiores aos demais. Considerando apenas os efeitos devido à dominância, os critérios WPPA, RHM, análise via marcas únicas e 𝑃𝑃 𝑖𝑛𝑡 apresentaram resultados relevantes com relação as medidas de eficiência para as características controladas por 3 QTL. Palavras-chave: Regiões Genômicas. Marcadores Moleculares. Métodos Bayesianos. Variância Genética.Item CM-generator: uma metodologia para geração de matrizes de correlação customizadas(Universidade Federal de Viçosa, 2020-10-21) Martins, Helgem de Souza Ribeiro; Oliveira, Fernando Luiz Pereira de; http://lattes.cnpq.br/5426301294483982A simulação de matrizes de correlações aleatórias é um procedimento im- portante em diversas áreas de pesquisa. Este estudo propõe um método denominado Custom Matrix generator (CM-generator) para gerar matrizes de correlação que sempre atendem às premissas matemáticas, e um algo- ritmo com base na metodologia desenvolvida. A técnica proposta é capaz de gerar matrizes de correlação personalizadas, tanto em termos de in- tensidade das correlações quanto em relação à distribuição de proporções entre níveis de intensidade de correlação, para diversas aplicações, que po- dem ser usadas em vários estudos. O método produz resultados eficientes quanto ao tempo computacional e minimiza erros no processo de geração de matrizes de correlação personalizadas. Palavras-chave: Matrizes de correlação aleatórias. Simulação. Matrizes de correlação personalizadas. Gencor.Item Determinação do tamanho de amostra para a geoestatística(Universidade Federal de Viçosa, 2020-02-21) Mendes, André; Santos, Gerson Rodrigues dos; http://lattes.cnpq.br/6645099142656304A estimativa do tamanho da amostra na geoestatística é de grande importância para o planejamento e tomada de decisão, especialmente quando se objetiva a reconstrução total da população estudada. Por este motivo, muitos trabalhos sobre o tamanho da amostra geoestatística surgem com este propósito. Assim, o objetivo geral deste trabalho é utilizar a geoestatística associada ao teorema da taxa Nyquist para determinar um tamanho de amostra ideal quando se utiliza uma grade regular quadrática, na qual o modelo de dependência espacial ajustado é o gaussiano, identificando especificamente mudanças no tamanho ideal da amostra na presença de outliers. Dois conjuntos de dados altimétricos (Viçosa-MG, Brasil e Treynor-Iowa, EUA) foram analisados e o tamanho amostral ideal para ambos os conjuntos foi obtido. Posteriormente, os outliers foram removidos do conjunto de dados norte- americano e comparados os tamanhos de amostra ideais obtidos anteriormente. Além disso, utilizando os softwares R e ArcGIS, as estimativas dos parâmetros do modelo gaussiano, da média e da variância dos resíduos, provenientes da validação cruzada, foram comparadas através da construção de intervalos de confiança. Com o presente estudo concluiu-se que: (i) a distância máxima entre os pontos da grade regular quadrática é de aproximadamente 30% do alcance prático observado no semivariograma da primeira amostragem experimental; (ii) o tamanho amostral ideal obtido na presença de outliers é praticamente o dobro do tamanho de amostra ideal na ausência de outliers; (iii) o software R é o mais adequado na comparação das estimativas da média e da variância dos resíduos pois apresentou uma menor variabilidade (menores amplitudes dos intervalos de confiança construídos). Palavras-chave: Tamanho de amostra. Taxa Nyquist. Geoestatística. Outliers.
- «
- 1 (current)
- 2
- 3
- »