Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
1 resultados
Resultados da Pesquisa
Item Aprendizado de máquina e estatístico na discriminação de populações na presença de matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados(Universidade Federal de Viçosa, 2019-07-22) Carvalho, Vitor Prado de; Nascimento, Moysés; http://lattes.cnpq.br/1140674951892263Na análise discriminante, é avaliado a diversidade ou classificação dos indivíduos nas populações, para tal um grande número de metodologias está disponível, dentre as quais destacam-se os métodos multivariados de análise discriminante que têm sido utilizados em estudos preditivos da diversidade genética. Tal metodologia visa identificar as populações nas quais um indivíduo deva pertencer, admitindo previamente, que este indivíduo pertença a uma das populações avaliadas, no entanto esta análise pressupõe que as populações sejam provenientes de uma distribuição normal multivariada. Dentre as diversas metodologias de análise discriminante destaca-se a função discriminante linear de Fisher que possui para sua utilização a pressuposição de que as matrizes de covariância entre as populações sejam homogêneas, e na quebra desse pressuposto outras abordagens são necessárias como a análise discriminante quadrática ou auxilio de métodos computacionais como os de aprendizado de máquina. Desse modo o presente trabalho visa avaliar a robustez da função discriminante linear de Fisher na presença de matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados, já que na literatura não exemplifica o critério de escolha quanto ao uso de tal função. Os dados foram gerados por meio de simulação com cenários caracterizados por matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados e seus resultados foram comparados com outras metodologias de mesmo proposito, tais como a Análise Discriminante Quadrática, Redes Neurais Artificiais, Máquina de Vetor Suporte e Árvore de Classificação. De acordo com os resultados foi possível observar que as técnicas para classificação de indivíduos devem ser utilizadas seguindo suas pressuposições. Especificamente, para situações em que os dados apresentam normalidade multivariada e heterocedasticidade de matrizes de covariâncias, a função discriminante Quadrática apresentou melhores resultados quanto ao valor de Taxa de Erro Aparente (TEA). Para situações em que os dados apresentaram distribuição Poisson multivariada e homogeneidade de matrizes de covariância, a Função Discriminante de Fisher apresentou menores valores de TEA. As demais metodologias, Redes Neurais Artificiais, Máquina de Vetor Suporte, Árvores de Decisão e seus refinamentos (Poda, Bagging e Random Forest) e Boosting apresentaram valores razoáveis de TEA e se apresentam como técnicas alternativas para situações em que os pressupostos necessários para aplicação das técnicas da Função Discriminante de Fisher e da Função Discriminante Quadrática não são atendidos.