Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
1 resultados
Resultados da Pesquisa
Item Modelagem de semivariograma considerando anisotropia e dados discrepantes no estabelecimento de zonas de manejo(Universidade Federal de Viçosa, 2018-03-07) Barbosa, Danilo Pereira; Santos, Nerilson Terra; http://lattes.cnpq.br/6307014925031737Com o estabelecimento da agriculta de precisão, a heterogeneidade do solo tornou-se um parâmetro expressivo quanto ao seu manuseio. Frente a este cenário, destaca-se a utilização massiva das zonas de manejo (ZM). As ZM são sub-regiões do campo com necessidades específicas quanto as variáveis analisadas, permitindo o controle da heterogeneidade do solo, maximização produtiva e sustentabilidade agrícola. Entretanto, sua aplicabilidade esta condicionada ao mapeamento do padrão de variabilidade espacial dos atributos físico-químicos presentes no solo. Este mapeamento tem sido resultante da utilização contínua de métodos geoestatísticos, dos quais apresentam pressuposições inexploradas em suas aplicações, conduzindo assim, o objetivo desta pesquisa. E consequentemente norteou os específicos objetivos: a) avaliar alterações em mapas de ZM devido à correção da anisotropia e b) avaliar variações em mapas de ZM quanto à utilização de metodologia robusta à outliers. Para tanto, 160 pontos amostrais regularmente espaçados, relativos à condutividade elétrica aparente do solo (CEa), e produtividade de soja foram utilizados. Quanto à verificação de alterações em mapas de ZM devido à correção da anisotropia, os mesmos foram interpolados sem e com correção da anisotropia geométrica para cada variável. Na sequencia foram então utilizados para o delineamento das ZM por meio do método fuzzy k-means. As ZM para cada variável, com e sem correção da anisotropia geométrica, foram avaliadas quanto as suas semelhanças pelo índice kappa. Para a avaliação de variações em mapas de ZM quanto à ocorrência de outliers utilizaram-se dois tipos de análises, robusta a presença de outliers (ARob) e não robusta à outliers (ANRob). Na ARob utilizaram-se estimadores robustos desemivariâncias e o plug-in de krigagem de deriva externa para a geração de mapas de variabilidade espacial da CEa. Para a ANRob utilizou-se o estimador de semivariâncias de Matheron e a krigagem ordinária. Posteriormente os mapas obtidos foram submetidos ao delineamento de zonas de manejo pelo classificador fuzzy k-means. E de maneira conclusiva, os mapas obtidos em ambas as análises (ARob e ANRob) foram confrontados quanto à significância do nível de concordância entre suas classes pelo índice Kappa. Os resultados obtidos na verificação de alterações em mapas de ZM devido à correção da anisotropia foram: a) utilizou-se o modelo gaussiano na constituição dos mapas de variabilidade espacial para a CEa e para a produtividade, tanto para os dados corrigidos à anisotropia quanto aos não corrigidos; b) conforme os índices FPI e MPE, definiram-se duas classes para o delineamento de ZM para os dados corrigidos à anisotropia, quanto aos não corrigidos; c) a comparação entre os mapas (corrigido e não corrigido à anisotropia) pelo índice Kappa apresentou concordância significativa entre classes de ZM a 5% de probabilidade. Concluindo assim que, no caso em estudo, a correção da anisotropia geométrica não apresentou alterações significativas nos mapas de ZM. Os resultados obtidos na avaliação de variações em mapas de ZM quanto à ocorrência de outliers foram: a) na ARob selecionou-se o estimador de semivariâncias de Cressie Hawkins dentre os demais estimadores robustos avaliados. Na predição do mapa de estrutura de variabilidade espacial da CEa utilizou-se o plug-in de krigagem de deriva externa. Os índices FPI, MPE, Fukuyama Sugento e Xie beni definiram duas classes de ZM. b) na ANRob utilizou-se o estimador de semivariâncias de Matheron e a krigagem ordinária na composição do mapa de variabilidade espacial da CEa. Os índices avaliados definiram duas classes de ZM. c) os mapas obtidos em ambas as análises (ARob e ANRob) apresentaram concordância significativa entre classes de ZM pelo índice Kappa a 1% de probabilidade. Com isso, de maneira conclusiva, para o caso em estudo, o uso da ARob não apresentou variações significativas no estabelecimento das ZM.