Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
11 resultados
Resultados da Pesquisa
Item Seleção de marcadores utilizando probabilidade a posteriori de inclusão no modelo para predição genômica(Universidade Federal de Viçosa, 2023-07-18) Begnami, Vinicius Silva; Azevedo, Camila Ferreira; http://lattes.cnpq.br/3707637931879411Com o aumento constante da população mundial, a demanda por alimentos está crescendo diariamente, embora as áreas agricultáveis estejam chegando ao seu limite territorial. Uma solução para enfrentar esse desafio é a aplicação do melhoramento genético, que ganha cada vez mais destaque devido à sua capacidade de aumentar a produtividade e melhorar a qualidade dos alimentos em uma área de cultivo limitada. Com os avanços na genética molecular, é possível obter informações genéticas diretamente do DNA por meio de marcadores moleculares, especialmente os SNP (Single Nucleotide Polimorphism), que têm sido utilizados em estudos de Seleção Genômica Ampla (GWS, Genome Wide Selection). A GWS busca estimar os valores genéticos genômicos (GEBV, Genomic Estimated Breeding Value) dos indivíduos com base em informações genotípicas. No entanto, ao ajustar o modelo de predição, a alta dimensionalidade e multicolinearidade representam desafios, uma vez que o número de marcadores é muito superior ao número de indivíduos avaliados. Como nem todos os marcadores do genoma influenciam uma característica fenotípica específica, é comum realizar uma seleção prévia desses marcadores. Neste contexto, este estudo propõe a seleção os marcadores mais relevantes para a predição genômica com base em sua probabilidade de inclusão. Para atingir esse objetivo, a dissertação foi dividida em dois capítulos. O Capítulo 1 consiste em uma revisão de literatura sobre as metodologias estatísticas que serão aplicadas no próximo capítulo. O Capítulo 2 tem como principal objetivo a seleção dos marcadores mais relevantes a partir de um conjunto de dados reais originários do arroz Oryza Sativa. Este conjunto de dados contém 413 acessos genotipados para 44.100 marcadores do tipo SNP. A seleção dos marcadores é realizada com base na probabilidade a posteriori de inclusão, com cálculos apoiados na matriz de efeitos dos marcadores moleculares, estimados por meio do método BayesDπ, e no número total de iterações salvas. Após a seleção dos marcadores mais relevantes, eles são agrupados em conjuntos de 2.000, 4.000, 6.000, ..., até 36.901, de acordo com sua importância. Em seguida, cada grupo tem seu efeito estimado pelo método BayesA, e a capacidade preditiva do modelo de predição é calculada. Essa métrica é comparada com a capacidade preditiva dos modelos de predição ajustados pelos métodos bayesianos BayesA e BayesD𝜋, quando aplicados separadamente e sem a prévia seleção dos marcadores. Os resultados obtidos indicam que a seleção de marcadores mais relevantes para a predição genômica se mostra eficaz, com alta capacidade preditiva em comparação aos métodos BayesA e BayesD𝜋 quando usados isoladamente e sem a prévia seleção. Além disso, a probabilidade a posteriori de inclusão também demonstrou ser eficaz na compreensão da arquitetura genética da característica em estudo. Assim, a seleção de marcadores contribui para a redução da alta dimensionalidade, o aumento da capacidade preditiva do modelo de predição genômica e a redução do esforço computacional, abordando problemas recorrentes na seleção genômica. Palavras-chave: Marcadores Moleculares. Arroz. Seleção Genômica. Genética. Melhoramento Genético.Item Tamanho populacional na detecção de QTL utilizando regressão quantílica em estudos de associação genômica ampla(Universidade Federal de Viçosa, 2023-06-15) Oliveira, Gabriela França; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/9895689990102944Estudos de associação genômica (Genome-Wide Association Studies - GWAS) são aqueles que buscam identificar marcadores significativos que podem estar relacionadas às características de interesse nos programas de melhoramento. O Modelo Linear Geral (General Linear Model - GLM) é um dos principais procedimentos de avaliação de associações significativas entre marcadores e QTLs (Quantitative Trait Locus). A estimação dos efeitos dos marcadores por meio do GLM é baseada em médias condicionais. No entanto, esta estimação pode ser inadequada quando os erros não seguem distribuição normal e/ou não possuem variâncias homogêneas. Uma metodologia alternativa e que recentemente vem sendo explorada em estudos de associação genômica é a Regressão Quantílica (RQ), a qual possibilita a estimação do efeito dos marcadores ao longo de toda distribuição dos valores fenotípicos. A RQ já foi avaliada com sucesso em estudos de GWAS em um conjunto de dados reais que apresentava um número reduzido de indivíduos. Porém, a performance da técnica para diferentes tamanhos populacionais ainda não foi estudada. Diante do exposto, o objetivo deste estudo, foi avaliar a performance da RQ em estudos de GWAS quanto à capacidade de detectar QTLs associados as características fenotípicas de interesse, considerando diferentes tamanhos populacionais. Para isso, foram utilizados dados simulados, com características de diferentes níveis de herdabilidade (ℎ 2 = 0,30 e 0,50), controlados por 3 e 100 QTLs. Foi simulada uma população de 1000 indivíduos e posteriormente foram realizadas reduções aleatórias de 100 indivíduos até atingir uma população de tamanho 200. O poder de detecção de QTLs e a taxa de falsos positivos foram obtidos por meio do GLM e também por meio da RQ considerando três quantis diferentes (𝜏 = 0,10; 0,50 e 0,90). Como resultado, observou-se que os modelos RQ, apresentaram maior poder de detecção de QTLs em todos os cenários avaliados e taxa de falsos positivos relativamente baixa em cenários com maior número de indivíduos. Os modelos de RQ nos quantis extremos (𝜏 = 0,1 e 0,90) foram aqueles que obtiveram maior poder de detecção de QTLs verdadeiros. Em contrapartida, a análise baseada no GLM detectou poucos (cenários com maior tamanho populacional) ou nenhum QTL nos cenários avaliados. Nos cenários com baixa herdabilidade, o RQ obteve um alto poder de detecção. Dessa forma, verificou-se que a utilização da RQ em GWAS é eficaz, permitindo a detecção de QTLs associados a características de interesse, mesmo em cenários com poucos indivíduos genotipados e fenotipados. Palavras-chave: GWAS. Melhoramento genético. Modelo Linear Geral. Simulação. Quantis condicionais.Item Random Forest Quantílico aplicado em estudos de seleção genômica(Universidade Federal de Viçosa, 2022-11-04) Valadares, Cristiane Botelho; Nascimento, Moysés; http://lattes.cnpq.br/1899074948442515A seleção genômica ampla (GWS) utiliza marcadores distribuídos por todo o genoma para predizer o valor genético genômico de indivíduos. Esta abordagem possibilita acelerar o processo de melhoramento a partir de seleção precoce e aumentar a precisão de predição dos valores genéticos genômicos. Diversas técnicas estatísticas usadas para predição genômica, tais como RR-BLUP, G-BLUP, Bayes A e Bayes B são baseados em erros e, consequentemente, valores fenotípicos com pressupostos de normalidade. Técnicas de aprendizado de máquina tais como Bagging (BA), Random Forest (RF) e Random Forest Quantílico (QRF) aparecem como modelos alternativos já que não requerem suposições a priori sobre a relação funcional entre marcadores e os valores fenotípicos, sem a necessidade de atender pressuposições sobre as distribuições dos dados e dos resíduos. O QRF, metodologia ainda não explorada no contexto de seleção genômica, é um algoritmo não paramétrico que combina as vantagens do Random Forest (RF) e da Regressão Quantílica (QR). O método determina a distribuição de probabilidade de uma variável resposta e extrai informações de diferentes quantis e não apenas prevê a média. Neste trabalho propõe-se a avaliação do uso do QRF na predição genômica e a comparação de seus resultados com outras técnicas que já vem sendo exploradas em GWS. Neste trabalho dois artigos foram desenvolvidos com essa proposta. No primeiro deles, o objetivo foi avaliar o desempenho do QRF (nos quantis 0,1; 0,3; 0,5; 0,7 e 0,9) na predição dos valores genéticos genômicos para características com arquitetura genética não aditiva (epistasia e dominância). Adicionalmente, as acurácias obtidas foram comparadas com aquelas advindas do G-BLUP (G-BLUP aditivo, G-BLUP aditivo dominante e G-BLUP aditivo epistático). Foi simulada uma população F2 com 1.000 indivíduos genotipados para 4.010 marcadores SNP. Além disso, doze características foram simuladas a partir de um modelo considerando efeitos aditivos e não aditivos, com número de QTL (Quantitative trait loci) variando de oito a 120 e três níveis de herdabilidade (0,3, 0,5 ou 0,8). Em todos os cenários, os resultados da capacidade preditiva do QRF foram iguais ou superiores ao G-BLUP e mostrou ser uma ferramenta alternativa para predizer valores genéticos em características complexas. No segundo trabalho o objetivo foi avaliar o uso do QRF na predição genômica para três características de Coffea arábica e comparar as suas capacidades preditivas com metodologias de machine learning (Bagging e Random Forest), métodos bayesianos (Bayes C𝜋 e Bayes D𝜋) e o G-BLUP. Foram utilizadas as características bicho mineiro, cercosporiose e produção de grãos referentes à 195 indivíduos genotipados com 20.477 marcadores moleculares SNP, resultantes do cruzamento entre Catuaí e Híbrido de Timor, contrastantes em relação à ferrugem do cafeeiro. Os métodos bayesianos apresentaram melhor desempenho para a produção, já o QRF foi igual ou superior aos outros métodos para as características bicho mineiro e cercosporiose, com tempo de processamento muito inferior comparado ao Bayes C𝜋 e Bayes D𝜋. O QRF surge, então, como um algoritmo promissor para predição possibilitando, em alguns cenários, predições mais acuradas de GWS. Palavras-chave: Predição Genômica. Simulação de Dados. Melhoramento Genético do Cafeeiro. Métodos Bayesianos. G-BLUP. Aprendizado de Máquinas.Item Curva ROC para comparação de modelos de predição para variáveis dicotômicas(Universidade Federal de Viçosa, 2020-02-28) Silva Neto, Zeferino Gomes da; Martins Filho, Sebastião; http://lattes.cnpq.br/5738630579322084A utilização de modelos de regressão logística e de seleção genômica ampla (GWS) tem elevada importância em ciências agrárias e, portanto, há necessidade de aplicação de metodologias eficientes para a avaliação do poder discriminatório destes modelos. Uma metodologia pouco difundida nesta área e em GWS é a Receiver Operating Characteristic, ou curva ROC. Neste trabalho, objetivou-se aplicar curva ROC para a seleção de modelos de regressão logística aplicados a dados de germinação de sementes de pimentas habanero e à GWS, considerando dados de resistência do arroz Oriza sativa à brusone. Os modelos testados para a predição da capacidade germinativa das sementes foram compostos dos fatores: variedade (laranja e vermelha), período de armazenamento do fruto (0, 7 e 14 dias), método de extração das sementes (manual e mecânico) e período de armazenamento das sementes (3, 6, 9 e 12 meses). O modelo que se mostrou mais adequado conteve a interação entre variedade, armazenamento do fruto e armazenamento da semente. Por sua vez, os métodos utilizados na GWS, para avaliação da resistência à brusone, foram o BRR (Bayesian Ridge Regression), Bayes C𝜋 e BLASSO. Esses métodos foram comparados pelos seguintes critérios: taxa de erro na validação, coeficiente de Spearman e viés com a área abaixo da curva ROC (AUC). Os valores de AUC para a seleção dos modelos mostraram-se equivalentes aos valores dos índices usuais, que indicaram os modelos BRR e Bayes C𝜋 como os melhores. Além disso, a representação gráfica das curvas ROC se mostrou ainda mais vantajosa por permitir a determinação da sensibilidade dos modelos em diferentes valores de especificidade. Abaixo de 0,25 de 1-especificidade os modelos BRR e Bayes C𝜋 foram mais sensíveis que o BLASSO, mas acima deste valor todos foram equivalentes. No entanto, o BRR apresentou menor tempo de execução (4h52min, 6h1min, 6h25min para o BRR, Bayes C𝜋 e BLASSO, respectivamente). Por fim, pode-se verificar que a análise ROC se mostrou eficiente para a avaliação de modelos de regressão logística e de GWS e, portanto, os resultados aqui apresentados indicam que a curva ROC pode ser utilizada como uma excelente ferramenta para seleção de modelos em ciências agrárias. Palavras-chave: Regressão logística. Seleção Genômica Ampla. Germinação de sementes. Brusone do arroz. Pimenta habanero. Qualidade de ajuste de modelo.Item Regressão quantílica aplicada à seleção genômica para características oligogênicas em melhoramento de plantas autógamas(Universidade Federal de Viçosa, 2019-02-21) Oliveira, Gabriela França; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/9895689990102944O constante crescimento populacional e as limitadas áreas agricultáveis requerem o aumento da produtividade das espécies agronômicas. Nos últimos 50 anos estima-se que 50% do aumento da produtividade mundial dessas espécies foi devido ao melhoramento genético. Para que o melhoramento seja feito de forma eficiente, o conhecimento do sistema reprodutivo das espécies a serem melhoradas é de suma importância para um melhorista, uma vez que tal conhecimento auxilia na adoção de métodos adequados para cada espécie. Em geral, a obtenção de cultivares melhoradas é um processo longo e oneroso. Visando a redução de tempo e custos, além do aumento da acurácia de seleção, a Seleção Genômica Ampla (Genome Wide Selection - GWS) que utiliza informações diretas do DNA por meio dos marcadores moleculares para predição do valor genético genômico dos indivíduos, foi proposta. Dentre as diversas metodologias de GWS, recentemente, foi proposto o uso da Regressão Quantílica Regularizada (RQR). A RQR permite ajustar modelos de regressão ao longo de toda distribuição da variável dependente, possibilitando assim uma melhor descrição do fenômeno em estudo, quando comparada a metodologias tradicionais que se baseiam apenas na média condicional. O uso da RQR tem-se mostrado bastante promissor, porém, ainda não foi avaliado em todo o processo de um programa de melhoramento de plantas. Diante do exposto, objetivou-se avaliar o uso da RQR na seleção genômica, considerando dados simulados de plantas autógamas com características oligogênicas. Foi simulada uma população F 2 , com características com duas herdabilidades (0,4 e 0,8) e controladas por quatro genes. Foi realizado o avanço de gerações (até a F 6 ) considerando duas porcentagens de seleção (10% e 20%) e, como critério de seleção, o valor genético genômico obtido por meio da RQR, além da seleção fenotípica e de outros métodos tradicionais de seleção genômica, especificamente RR-BLUP e o BLASSO. Observou- se que o modelo de RQR apresentou, em relação a fixação dos alelos favoráveis, resultados melhores ou iguais aqueles obtidos por todos métodos avaliados. Especificamente, em cenários de herdabilidade 0,4, independente da porcentagem de seleção, somente a seleção dos indivíduos baseados no modelo de RQR no quantil (τ = 0,5) foi capaz de fixar os alelos favoráveis até a sexta geração. Por outro lado, em cenários de maior herdabilidade (0,8) e com porcentagem de seleção de 10%, a seleção baseada nos métodos RQR (τ = 0,5) e BLASSO permitiram a fixação dos alelos ainda na geração F 4 . Quando a seleção se baseou nos métodos RR-BLUP e seleção fenotípica os alelos favoráveis não foram fixados até a sexta geração em nenhum cenário avaliado. Em relação ao ganho de seleção, a RQR (τ = 0,5) obteve ganhos maiores ou iguais aos métodos tradicionais de seleção genômica em todos os cenários avaliados. Especificamente, os ganhos da RQR (τ = 0,5) foram até 4,5% maiores que aqueles obtidos pelo BLASSO, até 6,1% maiores que os do RR-BLUP e até 4,6% maiores que a seleção fenotípica. Dessa forma verificou-se com aplicação da RQR no melhoramento de plantas considerando populações simuladas de plantas autógamas com características oligogênicas, seria possível uma redução de tempo e consequentemente de custos, devido a diminuição das gerações de autofecundações para a fixação dos alelos favoráveis em todos os cenários avaliados ou a obtenção de genótipos melhorados.Item Predição genômica via redução de dimensionalidade em modelos aditivo dominante(Universidade Federal de Viçosa, 2018-02-26) Costa, Jaquicele Aparecida da; Azevedo, Camila Ferreira; http://lattes.cnpq.br/6939298449989672Grandes avanços no melhoramento animal e vegetal têm sido propiciados utilizando- se informações da genética molecular. Nessa perspectiva, idealizaram a Seleção Genômica Ampla (Genome Wide Selection – GWS) cuja abordagem envolve a cobertura completa do genoma utilizando milhares de marcadores SNPs (Single Nucleotide Polymorphisms). O objetivo é estimar o mérito genético dos indivíduos e para tal, as pesquisas realizadas na GWS se baseiam na busca e na aplicação de metodologias estatísticas que visam resolver os problemas enfrentados no processo de estimação, como a alta dimensionalidade e a alta colinearidade entre os marcadores. Dentre elas, se destacam os métodos de redução de dimensionalidade: Regressão via Componentes Principais (PCR), Quadrados Mínimos Parciais (PLS) e Regressão via Componentes Independentes (ICR) e o tradicional método de regularização/shrinkage, G-BLUP (Genomic Best Linear Unbiased Predictor). Assim, o primeiro capítulo contempla as ideias centrais e a importância da GWS para o melhoramento genético, a definição de efeitos aditivos e de efeitos devido à dominância, os problemas estatísticos enfrentados na estimação dos efeitos de marcadores nos fenótipos pelo método usual baseado em quadrados mínimos ordinários, bem como as metodologias estatísticas baseadas em redução dimensional para resolver tais problemas e os procedimentos de validação que tem por finalidade comparar as metodologias estatísticas da GWS. Já o segundo capítulo refere-se a proposição e aplicação de sete critérios para a escolha do número ótimo de componentes independentes a serem utilizados na ICR, considerando apenas os efeitos aditivos. Os critérios consistem em determinar que o número de componentes independentes seja igual ao número de componentes que conduz: (i) os valores genômicos estimados via PCR a um maior valor de acurácia; (ii) os valores genômicos estimados via PCR a um menor valor de viés; (iii) a PCR a 80% de explicação da variação total de X; (iv) a PCR a 80% de explicação da variação total de Y; (v) a ICR a 80% de explicação da variação total de X; além dos critérios que consistem no número de componentes independentes igual ao número de variáveis determinadas pelos procedimentos (vi) Forward Selection e (vii) Backward Selection. O conjunto de dados simulados era composto por 2.000 marcadores SNPs e as populações simuladas totalizaram 1.000 indivíduos de 20 famílias de irmãos completos que tiveram os fenótipos e os genótipos avaliados. Além disso, os cenários simulados são baseados em dois níveis de herdabilidade e duas arquiteturas genéticas com ausência de dominância, constituindo assim, em quatro cenários, os quais foram simulados dez vezes cada. Com o intuito de demonstrar a aplicabilidade do estudo no melhoramento genético, foram avaliadas seis características de produtividade de um conjunto de dados reais de arroz asiático Oryza sativa (Número de panículas por planta, altura da planta, comprimento da panícula, número de panículas no perfilho primário, número de sementes por panícula e espiguetas por panícula) correspondente a 370 acessos de arroz, os quais foram genotipados para 44.100 marcadores SNPs. Em ambos os casos (dados simulados e reais) foi utilizada a validação independente e calculada as medidas de eficiência para comparar os critérios. De modo geral, as análises indicaram que o primeiro critério (número de componentes independentes igual ao número de componentes principais cujos os valores genômicos estimados via PCR apresentava maior valor de acurácia) se mostrou mais eficiente para os dois conjuntos de dados e apresentou as medidas de eficiência mais próximas do método exaustivo, com a vantagem de exigir menos tempo e esforço computacional. Para complementar o estudo, o terceiro capítulo consiste na aplicação dos três critérios mais eficientes do capítulo 2, os quais consistem no número de componentes independentes igual ao número de componentes que conduz os valores genômicos estimados via PCR a um maior valor de acurácia; a um menor valor de viés e a PCR a 80% de explicação da variação total de X considerando o modelo aditivo-dominante. Ainda no contexto deste modelo, foi aplicado os três métodos de redução de dimensionalidade (PCR, PLS e ICR) levando em consideração a escolha do número ótimo de componentes que conduz os valores genômicos aditivos, valores genômicos devido à dominância ou os valores genômicos totais (aditivo + dominância) a uma maior acurácia. Todos os métodos de redução de dimensionalidade foram comparados com o G-BLUP em termos de eficiência na estimação dos valores genômicos. As populações simuladas foram constituídas por 1.000 indivíduos de 20 famílias de irmãos completos, sendo genotipados para 2000 marcadores SNPs e as análises correspondentes a quatro cenários (dois níveis de herdabilidade × duas arquiteturas genéticas) sendo assumido dominância completa. Os resultados do capítulo 3 assinalaram que se manteve a superioridade do critério 1 nos modelos aditivo-dominante. Além disso, para a estimação dos efeitos aditivos e devido a dominância concomitantemente por meio dos métodos de redução de dimensionalidade, é recomendável utilizar o número de componentes que conduz o valor genômico devido à dominância a uma maior acurácia. Ademais, ao confrontar as metodologias de redução dimensional (ICR, PCR e PLS) com o G-BLUP, verifica- se que a PCR é superior em termos de acurácia e o método vantajosamente apresenta um dos menores tempos computacionais na execução das análises. Ademais, nenhum dos métodos considerados capturaram adequadamente as herdabilidades simuladas e apresentaram viés.Item Discriminação de população por meio de inteligência computacional(Universidade Federal de Viçosa, 2016-02-25) Carvalho, Vitor Prado de; Nascimento, Moysés; http://lattes.cnpq.br/1140674951892263É importante para a preservação da variabilidade genética e da biodiversidade a correta classificação dos indivíduos. As técnicas de estatística multivariada comumente utilizada nessas situações são as funções discriminantes de Fisher e de Anderson, que permitem alocar um indivíduo inicialmente desconhecido em uma das g populações prováveis ou grupos pré-definidos. Entretanto, para o caso de populações não linearmente separáveis, esses métodos tem se mostrado pouco eficientes devido ao fato de não conseguir detectar a diferença entre as populações. Em alguns casos é preciso captar o máximo de informação possível e para tal outro método é necessário quando não for possível adquirir resultados pelos métodos multivariados. Portanto uma alternativa como possível solução para tal finalidade são as redes neurais artificiais, utilizadas em diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. Outra técnica computacional que também vem adquirindo credibilidade e grande atenção nos últimos anos é conhecida como Máquina de Vetor Suporte (Support Vector Machines - SVMs). As SVMs vêm sendo utilizadas em diversas tarefas de reconhecimento de padrões, obtendo resultados superiores ou similares aos alcançados por técnicas similares em várias aplicações como em detecção de faces em imagens e na categorização de textos. Diante do exposto, o objetivo deste trabalho é avaliar a utilização da máquinas de vetores suporte em problemas de discriminação de populações com estruturas genéticas conhecidas. Além disso, os resultados obtidos pela técnica foram comparados com aqueles advindos de análises discriminante de Anderson e redes neurais. Cada população foi caracterizada por um conjunto de elementos mensurados por características de natureza contínua. Foram geradas considerados 50 locos independentes, cada qual com dois alelos. As relações de parentescos e a estruturação hierárquica foram estabelecidas considerando populações genitoras geneticamente divergentes, híbrido F 1 e três gerações de retrocruzamentos em relação a cada um dos genitores, permitindo estabelecer parâmetros de eficácia das metodologias testadas. Os dados fenotípicos das populações foram utilizados para estabelecimento da função discriminante de Anderson e para o cálculo da taxa de erro aparente (TEA), que mede o número de classificações incorretas. As estimativas de TEA foram comparadas com as obtida por meio das Redes Neurais Artificiais e a Máquina de Vetor Suporte para verificação dos problemas de classificações, buscando minimizar o número de classificações incorretas em comparação aos obtidos pela função discriminante. De acordo com os resultados avaliados, a Rede Neural obteve resultados satisfatórios com TEA a 0% enquanto que o método SVM obteve TEA de 14,44% a 67,41% enquanto que a de Anderson manteve TEA entre 18,89% a 74,07%. No entanto são necessários mais estudos quanto a utilização da SVM com base em algoritmos de otimização de busca para o espaço de parâmetros para pôr fim tentar alcançar resultados mais satisfatórios.Item Análise de correspondência: uma abordagem geométrica(Universidade Federal de Viçosa, 2012-06-28) Silva, Yury Vasconcellos da; Regazzi, Adair José; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783586A7; Santos, Gérson Rodrigues dos; http://lattes.cnpq.br/0674757734832405; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; http://lattes.cnpq.br/0641718908659343; Lopes, Jaques Silveira; http://lattes.cnpq.br/1605698945852448; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7A análise de correspondência é uma técnica estatística multivariada que permite realizar a análise simultânea de diferentes variáveis categóricas. Possui aspecto simples e intuitivo na apresentação de resultados por meio dos mapas perceptuais. Apesar da análise de correspondência estar disponível em diversos softwares, incluindo o sistema livre R, o principal problema que contribui para o desconhecimento do potencial desta técnica e de sua consequente difusão é a existência de diversos textos especializados de difícil compreensão, por apresentarem um alto nível de algebrismo, abstração e por omitirem passos elucidativos importantes. Por outro lado, a leitura pura e simples das técnicas de interpretação se torna desprovida de sentido convincente, que pode levar a equívocos e insegurança nas interpretações e impede até mesmo de tirar o maior proveito possível dos resultados. Assim, o objetivo deste trabalho foi elaborar um texto elucidativo que mostrasse os detalhes matemáticos de todas as etapas da análise de correspondência, de forma aplicada e com ênfase na construção geométrica. Uma aplicação desta técnica com dados de um experimento na área de melhoramento genético da cana-de-açúcar é apresentada na qual constatou-se que o número de colmos é um fator determinante para antecipar a categoria de peso da touceira. Esta informação é de fundamental importância, uma vez que pode facilitar os aspectos operacionais na seleção de famílias para o melhoramento genético, visto que o pesquisador não necessitará esperar a época da colheita para selecioná-las, pois poderá fazê-la previamente se baseando naquelas com os maiores números de colmos. Portanto concluiu-se que esta técnica pode ser promissora em ciências agrárias. Apesar da leitura do presente trabalho exigir tempo e disposição, o mesmo contribui para um melhor entendimento desta técnica, principalmente para um leitor não muito afeito aos desenvolvimentos algébricos, pois ele fornece uma visão completa do passo a passo da análise de correspondência simples através da visão geométrica e do exemplo ilustrativo.Item Modelos mistos na seleção entre e dentro de famílias de cana de açúcar sob o enfoque bayesiano(Universidade Federal de Viçosa, 2012-02-16) Silva, Mariane Alves Gomes da; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Barbosa, Marcio Henrique Pereira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782585E6; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; http://lattes.cnpq.br/1509561362434207; Nascimento, Moysés; http://lattes.cnpq.br/6544887498494945; Silva, Felipe Lopes da; http://lattes.cnpq.br/4564712877039359; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5A base do agronegócio de cana-de-açúcar é o melhoramento genético. Pode ser mostrado que a estratégia ótima de seleção da planta seria através da predição de valores genotípicos usando o BLUP (Best Linear Unbiased Predictor) individual (BLUPI). Este procedimento usaria, simultaneamente, a informação de família e de indivíduos para a seleção. No entanto esse método dificilmente é usado nos programas de melhoramento devido a problemas operacionais relacionados à obtenção dos dados ao nível de planta. Recentemente uma alternativa operacionalmente mais prática foi proposta, e é denominada BLUPIS (BLUP individual simulado). Nesse caso os dados são coletados ao nível de parcela. Com isso é possível selecionar as melhores famílias e, posteriormente, simular o número de indivíduos a serem selecionados dentro das melhores famílias. Este trabalho teve como objetivo desenvolver um algoritmo para análise do BLUPIS sob o enfoque bayesiano, com diferentes definições de distribuições a prioris na sua modelagem, no software estatístico R, para possível disponibilização ao usuário e compará-la com o método clássico REML/BLUP. Os resultados mostraram que o método BLUPIS com enfoque bayesiano realizado através do algoritmo construído junto ao programa R foi eficiente. O algoritmo levou em consideração a incerteza existente sobre todos os parâmetros do modelo, como também possibilitou o uso de priori informativa. O método bayesiano se mostrou mais eficiente, isto é, com efeitos genotípicos maiores e variâncias e herdabilidade menores, quando se consideraram no modelo a informação de parentesco e a distribuição da priori informativa.Item Interação genótipos ambientes em animais via modelos de normas de reação(Universidade Federal de Viçosa, 2012-02-17) Rodrigues, Daniele Tôrres; Resende, Marcos Deon Vilela de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4709374E4; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; http://lattes.cnpq.br/4682555268827167; Souza, Gustavo Henrique de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760298P6Uma questão básica no melhoramento genético animal é se a seleção dos animais praticada em um determinado ambiente resulta em progresso genético em outro tipo de ambiente. A presença de interação genótipos ambientes (IGA) é caracterizada pela resposta diferenciada dos genótipos às variações ambientais, o que pode ocasionar alteração na classificação dos genótipos nos diferentes ambientes. Dentre as formas de se avaliar a IGA, os modelos de norma de reação (MNR) têm se destacado, atualmente, em todo o mundo. O MNR linear é uma função de covariância que permite atribuir a cada animal, dois coeficientes de regressão aleatórios (intercepto e inclinação) que predizem o valor genético em função do ambiente. Assim, cada animal terá um valor genético predito para cada ambiente. Este estudo tem o objetivo de verificar a presença de IGA para peso à desmama em bovinos da raça Nelore Mocho criados em diferentes regiões produtoras no Nordeste do Brasil, utilizando o modelo de normas de reação. Ajustou-se dois modelos de normas de reação aos dados, MNR em dois passos e o MNR em um passo. O primeiro utiliza um modelo sem considerar a interação genótipos ambientes para obter estimativas dos efeitos de ambiente e em seguida as utiliza como uma covariável conhecida em um modelo de regressão aleatória e o segundo, sob o enfoque Bayesiano, estima todos os parâmetros simultaneamente. As análises foram realizadas por meio dos softwares SAS, R, AMC e Intergen. Com base em dois dos três critérios utilizados para escolha do modelo, o que melhor se ajustou aos dados foi o MNR em um passo. Por meio deste modelo foi possível verificar a presença de interação genótipos ambientes e estimar o valor genético dos animais para cada região produtora do Nordeste, para a característica peso à desmama. Assim, é possível recomendar os reprodutores mais apropriados para cada ambiente estudado, capitalizando os efeitos da IGA.